• Title/Summary/Keyword: Sub spatial

Search Result 801, Processing Time 0.026 seconds

Evaluation of Retrieval Accuracy of NO2 Column Density from Pandora Raw Data According to Wavelength Range and Absorption Cross-section Using DOAS Method (Pandora 원시자료로부터 차등흡수분광법을 이용하여 이산화질소 칼럼 농도 산출 시 파장 구간 및 흡수단면적에 따른 산출 정확도 평가)

  • Kim, Serin;Kim, Daewon;Lee, Hanlim
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.2
    • /
    • pp.215-222
    • /
    • 2022
  • In this study, the effect of wavelength range and absorption cross-section used to retrieve nitrogen dioxide (NO2) vertical column density (VCD) from Pandora was analyzed using Differential Optical Absorption Spectroscopy (DOAS). During the GEMS Map of the Air Pollution (GMAP) 2020 campaign, data from direct sunlight observation with Pandora instrument in Seosan was used, and NO2 VCD was retrieved under four conditions. The average NO2 VCD under the four conditions ranged from 1.22×1016~1.38×1016 molec. cm-2, with a maximum difference of 0.16×1016 molec. cm-2 between each condition. The fitting error averaged 3.19~9.59%, showing an error within 10% in all cases, and the RMS was 5.11×10-3~7.16×10-3 molec. cm-2. The retrieved NO2 VCD using 4 conditions shows a slope in the range of 0.98 to 1.09 and correlation of 0.96 to 0.98 in comparison with Pandonia Global Network (PGN).

The Effects of 4D-Frame Teaching upon Mathematically Gifted Elementary Students' Mathematical Creativity and Spatial Sense (4D 프레임 활용 학습이 초등 수학영재학생의 공간감각 및 수학적 창의성에 미치는 영향)

  • Lee, Ju Yong;Choi, Jae Ho
    • Education of Primary School Mathematics
    • /
    • v.16 no.1
    • /
    • pp.1-20
    • /
    • 2013
  • The aim of this study was to develop a gifted educational program in math-gifted class in elementary school using recently developed 4D-frame. This study identified how this program impacted on spatial sense and mathematical creativity for mathematically gifted students. The investigation attempted to contribute to the developments for the gifted educational program. To achieve the aim, the study analysed the 5 and 6th graders' figure learning contents from a revised version of the 2007 national curriculum. According to this analysis, twelve learning sections were developed on the basis of 4D-frame in the math-gifted educational program. The results of the study is as follows. First, a learning program using 4D-frame for spatial sense from mathematically gifted elementary school students was statistically significant. A sub-factor of spatial visualization called mental rotation and sub-factors of spatial orientations such as sense of distance and sense of spatial perception were statistically significant. Second, the learning program that uses 4D-frame for mathematical creativity was statistically significant. The sub-factors of mathematical creativity such as fluency, flexibility and originality were all statistically significant. Third, the manipulation properties of 4D-frame helped to understand the characteristics of various solid figures. Through the math discussions in the class, participants' error correction was promoted. The advantage of 4D-frame including easier manipulation helped participants' originality for their own sculpture. In summary, this found that the learning program using 4D-frame attributed to improve the spatial sense and mathematical creativity for mathematically gifted students in elementary school. These results indicated that the writers' learning program will help to develop the programs for the gifted education program in the future.

Spatial Reuse Algorithm Using Interference Graph in Millimeter Wave Beamforming Systems

  • Jo, Ohyun;Yoon, Jungmin
    • ETRI Journal
    • /
    • v.39 no.2
    • /
    • pp.255-263
    • /
    • 2017
  • This paper proposes a graph-theatrical approach to optimize spatial reuse by adopting a technique that quantizes the channel information into single bit sub-messages. First, we introduce an interference graph to model the network topology. Based on the interference graph, the computational requirements of the algorithm that computes the optimal spatial reuse factor of each user are reduced to quasilinear time complexity, ideal for practical implementation. We perform a resource allocation procedure that can maximize the efficiency of spatial reuse. The proposed spatial reuse scheme provides advantages in beamforming systems, where in the interference with neighbor nodes can be mitigated by using directional beams. Based on results of system level measurements performed to illustrate the physical interference from practical millimeter wave wireless links, we conclude that the potential of the proposed algorithm is both feasible and promising.

A study on evaluating the spatial distribution of satellite image classification error

  • Kim, Yong-Il;Lee, Byoung-Kil;Chae, Myung-Ki
    • Proceedings of the KSRS Conference
    • /
    • 1998.09a
    • /
    • pp.213-217
    • /
    • 1998
  • This study overviews existing evaluation methods of classification accuracy using confusion matrix proposed by Cohen in 1960's, and proposes ISDd(Index of Spatial Distribution by distance) and ISDs(Index of Spatial Distribution by scatteredness) for the evaluation of spatial distribution of satellite image classification errors, which has not been tried yet. Index of spatial distribution offers the basis of decision on adoption/rejection of classification results at sub-image level by evaluation of distribution, such as status of local aggregation of misclassified pixels. So, users can understand the spatial distribution of misclassified pixels and, can have the basis of judgement of suitability and reliability of classification results.

  • PDF

Using Spatial Pyramid Based Local Descriptor for Face Recognition (공간 계층적 구조 기반 지역 기술자 활용 얼굴인식 기술)

  • Kim, Kyeong Tae;Choi, Jae Young
    • Journal of Korea Multimedia Society
    • /
    • v.20 no.5
    • /
    • pp.758-768
    • /
    • 2017
  • In this paper, we present a novel method to extract face representation based on multi-resolution spatial pyramid. In our method, a face is subdivided into increasingly finer sub-regions (local regions) and represented at multiple levels of histogram representations. To cope with misaligned problem, patch-based local descriptor extraction has been also developed in a novel way. To preserve multiple levels of detail in local characteristics and also encode holistic spatial configuration, histograms from all levels of spatial pyramid are integrated by using dimensionality reduction and feature combination, leading to our spatial-pyramid face feature representation. We incorporate our proposed face features into general face recognition pipeline and achieve state-of-the-art results on challenging face recognition problems.

On the Comparison of MTF in Sub-Band Coding Technique Employing the Human Visual System (인간의 시각특성을 고려한 Sub-Band 부호화에서 MRF 비교에 관한 연구)

  • 김용관;박섭형;이상욱
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.27 no.5
    • /
    • pp.784-792
    • /
    • 1990
  • In this paper, attempts have been made to compare the subjective performance of sub-band coding (SBC) techniques incorporating four representative modulation transfer functions (MTF's) of th human visual system(HVS): Sakrison, Nill, Ngan, and Rao. In SBC, the frequency band of input signal is split into 16 equal sub-bands. In addition, 28 sub-band splitting schemd which splits more sub-bands in low spatial frequency is considered to compare the 4 MTF's effectively. In encoding of each sub-band, the weight of each sub-band obtained from the MTF of HVS is applied to bit allocation process which minimize the weighted mean square error (WMSE). The differential pulse code modulation(DPCM) coder is used to encode the lowest sub-band and the pulse code modulation(PCM) coder is used for the rest of sub-bands. It is found that the images incorporating the MTF of Rao yields the best results in subjective criteria, followed by Ngan, Nill, Sakrison, and the images not employing the HVS.

  • PDF

Vulnerability Assessment for Fine Particulate Matter (PM2.5) in the Schools of the Seoul Metropolitan Area, Korea: Part I - Predicting Daily PM2.5 Concentrations (인공지능을 이용한 수도권 학교 미세먼지 취약성 평가: Part I - 미세먼지 예측 모델링)

  • Son, Sanghun;Kim, Jinsoo
    • Korean Journal of Remote Sensing
    • /
    • v.37 no.6_2
    • /
    • pp.1881-1890
    • /
    • 2021
  • Particulate matter (PM) affects the human, ecosystems, and weather. Motorized vehicles and combustion generate fine particulate matter (PM2.5), which can contain toxic substances and, therefore, requires systematic management. Consequently, it is important to monitor and predict PM2.5 concentrations, especially in large cities with dense populations and infrastructures. This study aimed to predict PM2.5 concentrations in large cities using meteorological and chemical variables as well as satellite-based aerosol optical depth. For PM2.5 concentrations prediction, a random forest (RF) model showing excellent performance in PM concentrations prediction among machine learning models was selected. Based on the performance indicators R2, RMSE, MAE, and MAPE with training accuracies of 0.97, 3.09, 2.18, and 13.31 and testing accuracies of 0.82, 6.03, 4.36, and 25.79 for R2, RMSE, MAE, and MAPE, respectively. The variables used in this study showed high correlation to PM2.5 concentrations. Therefore, we conclude that these variables can be used in a random forest model to generate reliable PM2.5 concentrations predictions, which can then be used to assess the vulnerability of schools to PM2.5.

Air Quality Monitoring in Daejeon City with Long-Term NO2 and SO2 Passive Diffusive Samplers (장기 NO2 및 SO2 Passive Diffusive Sampler(PDS)를 이용한 대전시 대기질 모니터링)

  • Yim, Bong-Been;Kim, Sun-Tae;Jung, Jae-Ho;Lee, Bum-Jin
    • Journal of Environmental Science International
    • /
    • v.16 no.2
    • /
    • pp.187-195
    • /
    • 2007
  • Long-term passive diffusive samplers(PDS) have been used to measure $NO_2\;and\;SO_2$ concentrations at 21 sampling sites in Daejeon, Korea during the period of January 2000 - December 2002. The spatial distributions of annual $NO_2\;and\;SO_2$ concentrations were mapped. Average annual $NO_2$ concentration over the sampling period was $28.5{\pm}12.5\;ppb$, ranging from 1.2 to 81.7 ppb. Average annual $SO_2$ concentration over the sampling period was $7.7{\pm}4.8\;ppb$, ranging from 0.6 to 26.8 ppb. On average, $NO_2$ concentration was approximately 5.8%(1.6 ppb) larger in 2002. $SO_2$ concentration was decreased by 13%(1.1 ppb) during the sampling period. The seasonal variation of $NO_2\;and\;SO_2$ concentration was observed with a tendency to be higher in fall and winter. $NO_2\;and\;SO_2$, concentrations measured at different site types(patterns of land use) show significant difference. The observed difference in concentration was associated with difference in emissions of $NO_2$ from motor vehicles and $SO_2$ by non-traffic fuel consumption for heating.

Theoretical Investigation of the Generation of Broad Spectrum Second Harmonics in Pna21-Ba3Mg3(BO3)3F3 Crystals

  • Kim, Ilhwan;Lee, Donghwa;Lee, Kwang Jo
    • Current Optics and Photonics
    • /
    • v.5 no.4
    • /
    • pp.458-465
    • /
    • 2021
  • Borate nonlinear optical crystals have been used as frequency conversion devices in many fields due to their unique transparency and nonlinearity from ultraviolet to visible spectral range. In this study, we theoretically and numerically investigate the properties of broadband second harmonic generation (SHG) in the recently reported Pna21-Ba3Mg3(BO3)3F3 (BMBF) crystal. The technique is based on the simultaneous achievement of birefringence phase matching and group velocity matching between interacting waves. We discussed all factors required for broadband SHG in the BMBF in terms of two types of phase matching and group velocity matching conditions, the beam propagation direction and the corresponding effective nonlinearity and spatial walk-off, and the spectral responses. The results show that bandwidths calculated in the broadband SHG scheme are 220.90 nm (for Type I) and 165.85 nm (for Type II) in full-width-half-maximum (FWHM). The central wavelength in each case is 2047.76 nm for Type I and 1828.66 nm for Type II at room temperature. The results were compared with the non-broadband scheme at the telecom C-band.

Measurements of Impervious Surfaces - per-pixel, sub-pixel, and object-oriented classification -

  • Kang, Min Jo;Mesev, Victor;Kim, Won Kyung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.303-319
    • /
    • 2015
  • The objectives of this paper are to measure surface imperviousness using three different classification methods: per-pixel, sub-pixel, and object-oriented classification. They are tested on high-spatial resolution QuickBird data at 2.4 meters (four spectral bands and three principal component bands) as well as a medium-spatial resolution Landsat TM image at 30 meters. To measure impervious surfaces, we selected 30 sample sites with different land uses and residential densities across image representing the city of Phoenix, Arizona, USA. For per-pixel an unsupervised classification is first conducted to provide prior knowledge on the possible candidate spectral classes, and then a supervised classification is performed using the maximum-likelihood rule. For sub-pixel classification, a Linear Spectral Mixture Analysis (LSMA) is used to disentangle land cover information from mixed pixels. For object-oriented classification several different sets of scale parameters and expert decision rules are implemented, including a nearest neighbor classifier. The results from these three methods show that the object-oriented approach (accuracy of 91%) provides more accurate results than those achieved by per-pixel algorithm (accuracy of 67% and 83% using Landsat TM and QuickBird, respectively). It is also clear that sub-pixel algorithm gives more accurate results (accuracy of 87%) in case of intensive and dense urban areas using medium-resolution imagery.