• Title/Summary/Keyword: Su-Field Model Analysis

Search Result 152, Processing Time 0.03 seconds

Analysis of Field Noise from High Speed Train Using Dedopplerization (도플러 보정을 통한 고속열차 현장 측정 소음 분석)

  • Lee, Yong Woo;Lee, Duck Joo;Kwon, Hyeok Bin;Yun, Su Hwan
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.23 no.5
    • /
    • pp.431-437
    • /
    • 2013
  • Measured acoustic signal from operating high speed train contains frequency change called doppler shift due to its motion. To avoid this doppler shift wind tunnel test is required. But scaledown of model can cause change of source characteristics. And measurements using some part of train cannot reproduce real flow condition. The best way to recognize real noise source characteristics is measurement from operating high speed train but doppler shift makes it hard. So, we developed simple dedopplerization technique for one microphone and applied to field test data of high speed train. Through this, we could capture real frequency of noise from operating high speed train.

Optimal Design of Functionally Graded Plates (경사기능재료 판의 최적설계)

  • Na, Kyung-Su;Kim, Ji-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2006.05a
    • /
    • pp.1061-1064
    • /
    • 2006
  • Optimal design of functionally graded plates is investigated considering stress and critical temperature. Material properties are assumed to be temperature dependent and varied continuously in the thickness direction. The effective material properties are obtained by applying linear rule of mixtures. The 3-D finite element model is adopted using an 18-node solid element to analyze more accurately the variation of material properties and temperature field in the thickness direction. For stress analysis, the tensile stress ratio and compressive stress ratio of the structure under mechanical load are investigated. In the thermo-mechanical buckling analysis, temperature at each node is obtained by solving the steady-state heat transfer problem and Newton-Raphson method is used for material nonlinear analysis. Finally, the optimal design of FGM plates is studied for stress reduction and improving thermo-mechanical buckling behavior, simultaneously.

  • PDF

Bond-slip constitutive model of concrete to cement-asphalt mortar interface for slab track structure

  • Su, Miao;Dai, Gonglian;Peng, Hui
    • Structural Engineering and Mechanics
    • /
    • v.74 no.5
    • /
    • pp.589-600
    • /
    • 2020
  • The bonding interface of the concrete slab track and cement-asphalt mortar layer plays an important role in transferring load and restraining the track slab's deformation for slab track structures without concrete bollards in high-speed railway. However, the interfacial bond-slip behavior is seldom considered in the structural analysis; no credible constitutive model has been presented until now. Elaborating the field tests of concrete to cement-asphalt mortar interface subjected to longitudinal and transverse shear loads, this paper revealed its bond capacity and failure characteristics. Interfacial fractures all happen on the contact surface of the concrete track slab and mortar-layer in the experiments. Aiming at this failure mechanism, an interfacial mechanical model that employed the bilinear local bond-slip law was established. Then, the interfacial shear stresses of different loading stages and the load-displacement response were derived. By ensuring that the theoretical load-displacement curve is consistent with the experiment result, an interfacial bond-slip constitutive model including its the corresponding parameters was proposed in this paper. Additionally, a finite element model was used to validate this constitutive model further. The constitutive model presented in this paper can be used to describe the real interfacial bonding effect of slab track structures with similar materials under shear loads.

Development of Transdisciplinary Conceptual Model on the Curriculum in the Field of Engineering and Technology for the Colleges, Through the Analysis of the Curriculum in the Y College (Y대학 자동차과 교육과정 분석을 통한 전문대학 공학기술분야 교육과정의 탈학제적 개념모형 개발)

  • Park, Choul-Soo;Park, Su-Hong
    • Journal of Engineering Education Research
    • /
    • v.13 no.4
    • /
    • pp.15-25
    • /
    • 2010
  • The purpose of this study is to explore a conceptual model of transdisciplinary curriculum in the Field of Engineering and Technology for the Colleges Through the Analysis of the Curriculum Organization and Implementation in the Y College in order to solve problems of current curriculum in the department of automobile engineering in Y college. Methodology is a literature review, focus group interview. The result is that current curriculum is interdisciplinary. The interview to the faculty members in Y college about the applicability of a conceptual model of transdisciplinary curriculum on the course is that transdisciplinary curriculum model could be applied to the course but because of the variety of problems, it would be difficult to apply new curriculum.

  • PDF

Study on Field Experiment of Stack Effect Reduction in Stairwell of Building (건축물 계단에서의 연돌효과 저감방안에 대한 현장실험 연구)

  • Kim, Jung-Yup;Kim, Ji-Seok;Lee, Su-Gak
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.9
    • /
    • pp.484-490
    • /
    • 2015
  • The winter stack effect that occurs in vertical construction passages such as the stairwell or elevator shaft of a high-rise building negatively affects living environments, energy usage, and personal safety; therefore, a mitigation of the stack effect is required to improve building conditions. Recently, circulation-type facilities that comprise the usage of air blowers and vertical ducts were proposed as part of a mechanical approach to quantitatively control the stack effect. In this study, these circulation-type facilities were installed in a building stairwell and the performance of the device was evaluated during its operation. A numerical-analysis result was obtained under the test conditions using a network-model-based, numerical-analysis method, and the result was then used for a comparison with the test result.

Design and Characteristic Analysis of LSM for High Speed Train System using Magnetic Equivalent Circuit

  • Ham, Sang-Hwan;Cho, Su-Yeon;Kang, Dong-Woo;Lee, Hyung-Woo;Chan, Hong-Soon;Lee, Ju
    • International Journal of Railway
    • /
    • v.3 no.1
    • /
    • pp.14-18
    • /
    • 2010
  • This paper describes design and characteristic analysis of long primary type linear synchronous motor (LSM) for high speed train system. LSM is designed using loading distribution method and magnetic equivalent circuit. For characteristic analysis of LSM, analytical and numerical methods are applied. Analytical method for solving the magnetic field distribution of the analytic model is based on the Maxwell’s equations. Using the characteristic equation and magnetic equivalent circuit, we analyze the effect of variation of parameters, and then we validate the result by comparing with numerical method by finite element method (FEM). We compare the analytical method with numerical method for analyzing the effect by variable parameters. This result will be useful of design and forecast of performance without FEM.

  • PDF

Development of threshing cylinder simulation model of combine harvester for high-speed harvesting operation

  • Min Jong Park;Hyeon Ho Jeon;Seung Yun Baek;Seung Min Baek;Su Young Yoon;Jang Young Choi;Ryu Gap Lim;Yong Joo Kim
    • Korean Journal of Agricultural Science
    • /
    • v.50 no.3
    • /
    • pp.457-468
    • /
    • 2023
  • The purpose of this study is to develop a high-speed combine harvester. The performance was evaluated by composing a dynamic simulation model of a threshing cylinder and analyzing the amount of threshed rice grain during threshing operations. The rotational speed of the threshing cylinder was set at 10 rpm intervals from 500 rpm until 540 rpm, based on the rated rotational speed of 507 rpm. The rice stem model was developed using the EDEM software using measured rice stem properties. Multibody dynamics software was utilized to model the threshing cylinder and tank comprising five sections below the threshing cylinder, and the threshing performance was evaluated by weighing the grain collected in the threshing tank during threshing simulations. The simulation results showed that section 1 and 2 threshed more grains compared to section 3 and 4. It was also found that when the threshing speed was higher, the larger number of grains were threshed. Only simulation was conducted in this study. Therefore, the validation of the simulation model is required. A comparative analysis to validate the simulation model by field experiment will be conducted in the future.

Stability Analysis According to the Shape of Assembled Earth Retaining Wall by the Field Model Tests and 3D-Numerical Analysis (현장모형실험과 3D 수치해석을 통한 AER 조립식 지주옹벽의 형태에 따른 안정성 분석)

  • Seo, Minsu;Im, Jong-Chul;Son, Su Won;Kim, Hong-Sun;Choi, Jung-Hyun;Kim, Changyoung
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.1
    • /
    • pp.17-30
    • /
    • 2017
  • There are many limitations for ensuring structural stability of retaining wall. Especially, L-shaped retaining wall and gravity retaining wall need large space, and massive concrete, respectively. Assembled Earth Retailing (AER) wall was developed to overcome the shortcomings. In this paper, stability of AER wall is verified by field model tests and the 3D-numerical analysis. The results show that horizontal displacement of AER wall was reduced by maximum 67.84% for conventional retaining walls, and earth pressure acting on the retaining wall was reduced by maximum 73.19%.

Numerical Analysis on Flow Behavior of Gas Hydrate Bearing Sediments in the Ulleung Basin, East Sea of Korea (동해 울릉분지 가스하이드레이트 퇴적층의 해리 유동 전산 분석 연구)

  • Kim, Ji-Su;Lee, Rok-Sang;Lim, Jong-Se;Kim, Se-Joon
    • Journal of Energy Engineering
    • /
    • v.23 no.3
    • /
    • pp.102-115
    • /
    • 2014
  • In the Ulleung basin in the East Sea of Korea, it is assumed that huge amounts of gas hydrate(GH) are buried. In 2010, drilling operation was performed at the 2nd Ulleung Basin Gas Hydrate Drilling Expedition(UBGH2) to designate a site for field production test. In this study, based on the field production test site model reflecting geological properties, GH dissociation flow interpretation is analyzed and sensitivity analysis is performed to gain understanding of production behavior properties following bottomhole pressure(BHP) variation by using the numerical simulation. The results of this study provide a basis for the preliminary analysis of field production test site.

Estimation of Scour Depth at Bridnges and Comparative Analysis between Estimated and Measured Scour Depths (교량에서의 세굴깊이 산정 및 산정치와 실측치의 비교분석)

  • Yun, Yong-Nam;Lee, Jae-Su;Ho, Jeong-Seok
    • Journal of Korea Water Resources Association
    • /
    • v.30 no.5
    • /
    • pp.477-485
    • /
    • 1997
  • Recent internal and external bridge failures due to pier and abutment scour have emphasized the need for better methods of scour depth estimation. This paper compares the hydraulic analysis of the Namhan River Bridge over the Namhan River using one-dimensional models. WSPRO & HEC-2, and the two-dimensional model. TABS-MD based on the procedures presented in HEC-18 published by the U.S. FEdral Highway Administration. A comparison of estimated scour depth for this research based on the results from both one-dimensional and two-dimensional model is presented. At the same time, field measurement has been performed before and after flood using sounding instrument. Fathometer (DE-719C). A comparison between estimated and measured scour depth at bridge is also presented. Result shows that there is all the difference between estimated and measured scour depth due to dissimilarity between laboratory and field conditions. Also, it is difficult to measure the maximum scour depth accurately due to refilling. Therefore development of scour measuring equipment which can be used during peak flood, and derivation of empirical model appropriate for internal river system seems urgent.

  • PDF