• 제목/요약/키워드: Styrene-butadiene rubber

검색결과 168건 처리시간 0.021초

Linear viscoelastic behavior of acrylonitrile-butadiene-styrene(ABS) polymers in the melt: Interpretation of data with a linear viscoelastic model of matrix/core-shell modifier polymer blends

  • Park, Joong-Hwan;Ryu, Jong-Hoon;Kim, Sang-Yong
    • Korea-Australia Rheology Journal
    • /
    • 제12권2호
    • /
    • pp.135-141
    • /
    • 2000
  • The linear viscoelastic behavior of acrylonitrile-butadiene-styrene (ABS) polymers with different rubber content has been investigated in the frame of a linear viscoelastic model, which takes into account the inter-connectivity of the dispersed rubber particles. The model developed in our previous work has been shown to properly predict the low frequency plateau for the storage modulus, which is generally observed in polymer blends containing core-shell-type impact modifiers. In the present study, further experiments have been carried out on ABS polymers with different rubber content to verify the validity of our linear viscoelastic model. It has been found that our model describes quite properly the rheological behavior of ABS polymers with different rubber content, especially at low frequencies. The experimental data confirm that our model describes the rheological properties of rubber-modified thermoplastic polymers with strong adhesion at the particle/matrix interface more accurately than the Palierne model.

  • PDF

Styrene-Butadiene 무유화제 유화공중합에서의 아크릴계 친수성 공단량체의 영향 (The Effect of Various Hydrophilic Acrylic Comonomers on Soap-Free Emulsion Polymerization of Styrene-Butadiene Rubber)

  • 정희실;이창성;김병규;신영조
    • Elastomers and Composites
    • /
    • 제28권4호
    • /
    • pp.267-273
    • /
    • 1993
  • A number of hydrophilic acrylic comonomers were incorporated into styrene-butadiene soap-free emulsion polymerization. It was found that reaction rate decreased according to : AN>AA>MMA>EA>IA>AAM>MA>HEMA. It was also observed that reaction rate increased with decreasing H-bonding factor contribution to the solubility parameter of the hydrophilic comonoer. The SBR latexes were very monodisperse with the particle size distribution of $1.03{\times}1.12$. Since growth rate is proportional to polymerization time, the difference in conversion rates between various comonomers was resulted from the particle number density of SBR latexes for the various hydrophilic comonomers. It was also found that the colloidal stability of the latexes was excellent because no external emulsifier was incorporated.

  • PDF

Nanofiller as Vulcanizing Aid for Styrene-Butadiene Elastomer

  • Sahoo, N.G.;Das, C.K.;Panda, A.B.;Pramanik, P.
    • Macromolecular Research
    • /
    • 제10권6호
    • /
    • pp.369-372
    • /
    • 2002
  • The use of ZnO and stearic acid is very well known in sulfenamide accelerated sulfur vulcanization of diene elastomers. Zn-ion coated nano filler has been developed and tested, in styrene-butadiene rubber (SBR) as sulfur vulcanizing activator cum reinforcing filler. In this study Zinc oxide has been replaced by the Zn-ion coated nano silica filler with an aim to study the dual role of this nanofiller in SBR. The presence of Zn-ion on the nano silica filler surface activates the sulfur vulcanization by involving Zn++ in to the sulfurating complex formed with thiazole from sulfenamide. The increase of Zn-ion, on the nanofiller, decrease the scorch safety of the elastomer compound but increase the tensile strength, state of cure and tear strength and attain maximum at its 10% level. The presence of stearic acid increases the rate of vulcanization. Replacement of stearic acid with mono-stearate, however, increases the vulcanization rate but decrease the ultimate state of cure. A mechanistic scheme involving dual function of this nanofiller has been suggested.

Mechanical Properties of Styrene-Butadiene Rubber Reinforced with Silica by in situ Tetraethoxysilane Hydrolysis over Acid Catalyst

  • Li, Qingyuan;Li, Xiangxu;Cho, Ur Ryong
    • Elastomers and Composites
    • /
    • 제53권2호
    • /
    • pp.57-66
    • /
    • 2018
  • Styrene-butadiene rubber (SBR), reinforced with different contents of silica (with or without modification using silane coupling agents), was prepared by a modified sol-gel method involving hydrolyzation of tetraethoxysilane over an acid catalyst. The structures of the as-prepared samples were characterized using various techniques, such as scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier-transform infrared spectroscopy, and thermogravimetric analysis. The mechanical properties of the as-prepared samples were discussed in detail. The results revealed an increasing of the storage modulus (G') with increase in the silica content without modification. In contrast, G' decreased after modification using silane coupling agents, indicating a reduction in the silica-silica interaction and improved dispersion of silica in the SBR matrix. Both tensile stress and hardness increased with increase in the silica content (with modification) in the SBR matrix, albeit with low values compared to the samples with un-modified silica, except for the case of silica modified using (3-glycidyloxypropyl) trimethoxysilane (GPTS). The latter observation can be attributed to the special structure of GPTS and the effort of oxygen atom lone-pair.

보강성 충전제를 함유한 합성고무 블렌드의 물리적 특성에 관한 연구 (Studies on the Physical Properties of Synthetic Rubber Blends Containing Rein-forcing Fillers)

  • 고진환;이석
    • Elastomers and Composites
    • /
    • 제33권4호
    • /
    • pp.231-237
    • /
    • 1998
  • 보강성 충전제가 첨가된 고무블렌드의 물리적 특성을 조사하기 위해 카본블랙이 첨가된 유화중합 고무블렌드와 실란이 커플링된 실리카가 첨가된 용액중합 고무블렌드의 가황특성, 점탄성특성, 내마모 및 고무보강성 평가하였다. 유화중합 고무블렌드는 가장 높은 총결합고무량을 나타냈으나, 용액중합 고무블렌드는 고무블렌드 비율에 관계없이 일정한 총결합고무량을 나타내었다. 고무의 미세구조중 비닐 및 스틸렌 함량이 낮을수록, 배합고무중 총결합고무량이 높을수록 가황속도는 빠르게 나타났으며, 고무보강성 지표인 모듈러스는 총결합고무량과 선형적인 관계를 나타냈다. 많은 PICO 손실량은 고무의 미세구조중 비닐 및 스틸렌 함량이 증가할 때 나타났으나, 적은 PICO 손실량은 실란이 커프링된 실리카를 함유한 용액중합 고무블렌드에서 부타디엔의 비율이 증가할 때 관측되었다. 용액중합 고무블렌드는 유화중합 고무블렌드에 비해 $0^{\circ}C$에서 높은 손실계수, $60^{\circ}C$에서는 낮은 손실계수를 나타내었다.

  • PDF

The Effect of Surface Area of Silicas on Their Reinforcing Performance to Styrene-butadiene Rubber Compounds

  • Ryu, Changseok;Kim, Sun Jung;Kim, Do Il;Kaang, Shinyoung;Seo, Gon
    • Elastomers and Composites
    • /
    • 제51권2호
    • /
    • pp.128-137
    • /
    • 2016
  • The effect of the surface area of silicas on their reinforcing performance to styrene-butadiene rubber (SBR) compounds was systematically investigated. The feasibility of the Brunauer-Emmett-Teller surface area ($S_{BET}$) as a parameter representing the characteristics of the silicas was discussed compared to the mesopore volume, c value, oil absorption, and uptake of silane. The increase in $S_{BET}$ of silicas caused a considerable increase in Mooney viscosity, minimum torque, and hysteresis loss of the silica-filled SBR compounds, while significantly enhancing their abrasion property. These changes were explained by the attrition between the hydrophilic silica surface and the hydrophobic rubber chains. As expected, the change in $S_{BET}$ did not induce any remarkable changes in the cure, processing, tensile, and dynamic properties of the silica-filled SBR compounds because the crosslinking density of the rubber chains mainly determined these properties.

그래핀 옥사이드/카르복실화한 스티렌-부타디엔 고무 나노 복합체에 관한 연구 (A Study on Graphene Oxide and Carboxylated Styrene-Butadiene Rubber(XSBR) Nanocomposites)

  • 장선호;리시앙수;조을룡
    • 반도체디스플레이기술학회지
    • /
    • 제16권1호
    • /
    • pp.52-58
    • /
    • 2017
  • Graphene oxide (GO)/carboxylated styrene-butadiene rubber (XSBR) nanocomposites with various contents of GO were prepared by a latex compounding method. It has been confirmed that the functional groups of GO and the hydrogen bonds between GO and XSBR are existed. It can be seen that the scorch time ($t_{s2}$), which is the measurement of incipient vulcanization of rubber, showed a delay after the addition of GO. Field emission scanning electron microscopy was employed to confirm the uniform dispersion of filler in the matrix. Indeed, with increasing fillers loading, the torque, tensile strength, thermal stability and crosslink density of obtained nanocomposites were improved. These results were correlated to the better dispersion of fillers through the rubber matrix.

  • PDF