• Title/Summary/Keyword: Stuffing agent

Search Result 2, Processing Time 0.017 seconds

The Study of Odor-causing Compounds Emitted from a Stuffing Agent Production Process (가지제(加脂劑) 생산공정에서 배출되는 악취원인물질 연구)

  • Seo, Yong-Soo;Suh, Jeong-Min
    • Journal of Environmental Science International
    • /
    • v.27 no.9
    • /
    • pp.781-788
    • /
    • 2018
  • The volatile odor compounds emitted form a stuffing agent production process were quantified by ATD and GC-MS, and then odor causing compounds were identified by the method of EOI using each TLV. As the results, 72 odor compounds were detected and total concentration was turned up 87.6 ppmv level. In these compounds, aldehyde group is higher 45.49 ppmv than others group, the next is turn up the order of aliphatics, alcohols, esters, ketones. The EOA of aldehyde group show up 101,720 and 97.2%, respectively, the odor causing compounds were identified each of odor 2-Octenal 28.31%, Hexanal 24.06%, Valeraldehyde 16.07%, Butyraldehyde 9.69%, Heptanal 4.97%, Propionaldehyde 4.64%, Acetaldehyde 3.31%. The TLVs of 7 major odor compounds are lower value level of 0.001~0.0001 ppmv, odor causing even in trace level. We need to be concerned with reduction of aldehyde compounds in the odor problem by a stuffing agent production process or ironing process of the textile containing a stuffing agent.

Development in Planting Porous Block for Revegetation (녹화용 다공질 식재 블럭의 개발)

  • Ahn, Young-Hee;Choi, Kyoung-Young
    • Journal of the Korean Society of Environmental Restoration Technology
    • /
    • v.5 no.4
    • /
    • pp.1-9
    • /
    • 2002
  • This study is carried out to make the environmentally affinitive porous planting block for revegetation and to make a effective program for greening plans. The summary is shown below. 1. In order to get stronger intensity and distribute proper porosity in the block for planting, the cements mixed with fine soil were used and the finer in soil grains gives the stronger in intensity of the cements. Use of the furnace slag cements instead of the portland cements showed relatively stronger in intensity of the block. The intensity of the block became stronger when the mixed ratio of the cements to soil is 5 : 1, but the pore space ratio was lower. The percolate pH of the portland cements after one month of treatment was 13.1 but the percolate pH of the furnace slag cements was shown lower. To mold proper porous planting blocks, the proper combination of additives such as the dehydrating agent, elastic agent and adhesives into the mixture of cements and soil gives better effectives. 2. After molding the porous planting blocks, it gave a better result when the grains of the filler made of peat moss, upland soil and compound fertilizer were smaller than 2 mm in size. Shaking of the filling materials also gave the better result, but it took more time and cost much more. Therefore, it was better when the filling materials were mixed with water first then flew down for stuffing. 3. It was necessary to cover with soil after seeding or planting on the porous planting blocks. The proper thickness of the soil to help root development and keep moisture is about 3~5 cm. 4. The plants for planting on the porous planting block were required stronger in the growth condition of their roots and their environmental adaptability. The average germination percentage and rate of Platycodon grandiflorum on the porous planting block were 88.8% and 85% accordingly and their rate is very uniform. The germination rates of Dianthus superbus var. longicalycinus and Taraxacum officinale were more than 50%. These grass species, Chelidonium majus var. asiaticum, Lysimachia mauritiana and Scabiosa mansenensis were the suggested biennial grasses in the planting area where exchanging of the seedling or nursery plants was not necessary because their germination rates were 59.3, 45.6 and 40.3% accordingly. Viola kapsanensis, Chrysanthemum sp., Taraxacum sp. and Iris ensata var. spontanea are the grass species that could be used by seeding for greening. However, the germination rate of Solidago virga-aurea var. asiatica, Aster scaber and Lythrum anceps were lower than 10%. The coverage ratio of Ixeris stolonifera is more than 80% after 60 days seeding and the root length of most of species are more than 10 cm except Iris ensata var. spontanea and Platycodon grandiflorum because their root developed thicker than other species.