• Title/Summary/Keyword: Stub

Search Result 490, Processing Time 0.027 seconds

Design of a Compact Broadband Stacked Microstrip Patch Antenna (광대역 적층 마이크로스트립 패치 안테나의 소형화 설계)

  • Kim, GunKyun;Rhee, Seung-Yeop;Yeo, Junho;Lee, Jong-Ig;Kim, Ohn
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2016.10a
    • /
    • pp.72-73
    • /
    • 2016
  • In this paper, we studied a method for miniaturizing a broadband stacked patch antenna structure which is widely used for bandwidth improvement. Main patch is a rectangular microstrip patch antenna fed by a 50-ohm microstrip line, and a parasitic patch is laid above the main patch. The size of the main patch is designed to be resonated near the center frequency of the desired frequency band. Then parasitic patch longer than main patch is placed above the main patch. The distance between two patches might be adjusted so as to achieve impedance matching using a shunt open stub. The shunt matching stub is inserted underneath the parasitic patch and so it does not require additional space, which enables the proposed antenna structure to be advantageous in miniaturizing antenna. The effects of the various parameters on the antenna performance are examined, and we introduced the design procedure for the proposed antenna to operate in the frequency range of 2.3-2.7 GHz.

  • PDF

Experimental behavior of VHSC encased composite stub column under compression and end moment

  • Huang, Zhenyu;Huang, Xinxiong;Li, Weiwen;Mei, Liu;Liew, J.Y. Richard
    • Steel and Composite Structures
    • /
    • v.31 no.1
    • /
    • pp.69-83
    • /
    • 2019
  • This paper investigates the structural behavior of very high strength concrete encased steel composite columns via combined experimental and analytical study. The experimental programme examines stub composite columns under pure compression and eccentric compression. The experimental results show that the high strength encased concrete composite column exhibits brittle post peak behavior and low ductility but has acceptable compressive resistance. The high strength concrete encased composite column subjected to early spalling and initial flexural cracking due to its brittle nature that may degrade the stiffness and ultimate resistance. The analytical study compares the current code methods (ACI 318, Eurocode 4, AISC 360 and Chinese JGJ 138) in predicting the compressive resistance of the high strength concrete encased composite columns to verify the accuracy. The plastic design resistance may not be fully achieved. A database including the concrete encased composite column under concentered and eccentric compression is established to verify the predictions using the proposed elastic, elastoplastic and plastic methods. Image-oriented intelligent recognition tool-based fiber element method is programmed to predict the load resistances. It is found that the plastic method can give an accurate prediction of the load resistance for the encased composite column using normal strength concrete (20-60 MPa) while the elastoplastic method provides reasonably conservative predictions for the encased composite column using high strength concrete (60-120 MPa).

Thermo-mechanical compression tests on steel-reinforced concrete-filled steel tubular stub columns with high performance materials

  • David Medall;Carmen Ibanez;Ana Espinos;Manuel L. Romero
    • Steel and Composite Structures
    • /
    • v.49 no.5
    • /
    • pp.533-546
    • /
    • 2023
  • Cost-effective solutions provided by composite construction are gaining popularity which, in turn, promotes the appearance on the market of new types of composite sections that allow not only to take advantage of the synergy of steel and concrete working together at room temperature, but also to improve their behaviour at high temperatures. When combined with high performance materials, significant load-bearing capacities can be achieved even with reduced cross-sectional dimensions. Steel-reinforced concrete-filled steel tubular (SR-CFST) columns are one of these innovative composite sections, where an open steel profile is embedded into a CFST section. Besides the renowned benefits of these typologies at room temperature, the fire protection offered by the surrounding concrete to the inner steel profile, gives them an enhanced fire performance which delays its loss of mechanical capacity in a fire scenario. The experimental evidence on the fire behaviour of SR-CFST columns is still scarce, particularly when combined with high performance materials. However, it is being much needed for the development of specific design provisions that consider the use of the inner steel profile in CFST columns. In this work, a new experimental program on the thermo-mechanical behaviour of SR-CFST columns is presented to extend the available experimental database. Ten SR-CFST stub columns, with circular and square geometries, combining high strength steel and concrete were tested. It was seen that the circular specimens reached higher failure times than the square columns, with the failure time increasing both when high strength steel was used at the embedded steel profile and high strength concrete was used as infill. Finally, different proposals for the reduction coefficients of high performance materials were assessed in the prediction of the cross-sectional fire resistance of the SR-CFST columns.

Design of an Ultra-Compact UHF Passive RFID Tag Antenna for a Medical Sample Tube

  • Lee, Jung-Nam;Hwang, Moon-Young;Lee, Sang-Il;Lee, Kwang-Chun;Park, Jong-Kweon
    • ETRI Journal
    • /
    • v.34 no.6
    • /
    • pp.974-977
    • /
    • 2012
  • In this letter, a small-sized ultra-high frequency (UHF) RFID tag antenna for a medical sample tube is proposed. The RFID tag antenna is designed and fabricated based on the circular loop antenna used in the UHF band (Korea standard, 917 MHz to 923.5 MHz). The tag antenna size is reduced using a circular meander stub. The antenna has a physical size of 8 mm, which is about ${\lambda}$/40 in electrical length. The proposed tag antenna is molded into a medical sample and multitag identification is performed.

Complete collapse test of reinforced concrete columns

  • Abdullah, Abdullah;Takiguchi, Katsuki
    • Structural Engineering and Mechanics
    • /
    • v.12 no.2
    • /
    • pp.157-168
    • /
    • 2001
  • In this paper, experimental investigation into the behavior of reinforced concrete (RC) columns tested under large lateral displacement with four different types of loading arrangements is presented. Each loading arrangement has a different system for controlling the consistency of the loading condition. One of the loading arrangements used three units of link mechanism to control the parallelism of the top and bottom stub of column during testing, and the remaining employed eight hydraulic jacks for the same purpose. The loading systems condition used in this investigation were similar to the actual case in a moment-resisting frame where the tested column was displaced in a double curvature. Ten model column specimens, divided into four series were prepared. Two columns were tested monotonically until collapse, and unless failure took place at an earlier stage of loading, the remaining eight columns were tested under cyclic loading. Test results indicated that the proposed system to keep the top and bottom stubs parallel during testing performed well.

A Cost-Effective 40-Gb/s ROSA Module Employing Compact TO-CAN Package

  • Kang, Sae-Kyoung;Lee, Joon Ki;Huh, Joon Young;Lee, Jyung Chan;Kim, Kwangjoon;Lee, Jonghyun
    • ETRI Journal
    • /
    • v.35 no.1
    • /
    • pp.1-6
    • /
    • 2013
  • In this paper, we present an implemented serial 40-Gb/s receiver optical subassembly (ROSA) module by employing a proposed TO-CAN package and flexible printed circuit board (FPCB). The TO-CAN package employs an L-shaped metal support to provide a straight line signal path between the TO-CAN package and the FPCB. In addition, the FPCB incorporates a signal line with an open stub to alleviate signal distortion owing to an impedance mismatch generated from the soldering pad attached to the main circuit board. The receiver sensitivity of the ROSA module measures below -9 dBm for 40 Gb/s at an extinction ratio of 7 dB and a bit error rate of $10^{-12}$.

K-band MMIC Oscillator Design Using the PHEMT (PHEMT소자를 이용한 K-band MMIC 발진 설계)

  • 이지형;채연식;조희철;윤용순;이진구
    • Proceedings of the IEEK Conference
    • /
    • 2000.06b
    • /
    • pp.88-91
    • /
    • 2000
  • An MMIC oscillator operating at the 24.55 GHz has been designed using 0.2 ${\mu}{\textrm}{m}$AlGaAs/InGaAs/GaAs Pseudomorphic HEMT technology. The active device used in the oscillator design has a 0.2 ${\mu}{\textrm}{m}$ gate length PHEMT with 4$\times$80 ${\mu}{\textrm}{m}$ gate width. We obtained 4.08 dB of S$_{21}$ gain and 317 mS/mm of transconductance, and extrapolated unit current gain cut-off frequency (f$_{T}$) and maximum oscillation frequency (fmax) were 62 GHz and 120 GHz, respectively. The circuit are based on a series feedback and negative resistance topology. Microstrip line open stub is used to terminating. The oscillator circuits has designed for delivering maximum power to load and conjugated matching. The simulated small signal negative resistance was 50 Ω. We obtained 1.002 of loop gain and 0.0005$^{\circ}$angle from the simulation by HP libra 6.1. The layout for oscillator is 1.2$\times$1.8 $\textrm{mm}^2$.>.

  • PDF

Experimental study on partially-reinforced steel RHS compression members

  • Pinarbasi, Seval
    • Structural Engineering and Mechanics
    • /
    • v.63 no.3
    • /
    • pp.385-400
    • /
    • 2017
  • This paper presents an experimental study on the behavior of axially-loaded steel RHS (rectangular hollow section) compression members that are partially reinforced along their lengths with welded steel plates. 28 slender column tests were carried out to investigate the effects of the slenderness ratio of the unreinforced member and the ratio of the reinforced length of the member to its entire length. In addition to the slender column tests, 14 stub-column tests were conducted to determine the basic mechanical properties of the test specimens under uniform compression. Test results show that both the compressive strength and stiffness of an RHS member can be increased significantly compared to its unreinforced counterpart even when only the central quarter of the member is reinforced. Based on the limited test data, it can be concluded that partial reinforcement is, in general, more effective in members with larger slenderness ratios. A simple design expression is also proposed to predict the compressive strength of RHS columns partially reinforced along their length with welded steel plates by modifying the provisions of AISC 360-10 to account for the partial reinforcement.

Experimental capacity of perforated cold-formed steel open sections under compression and bending

  • Orlando, Maurizio;Lavacchini, Giovanni;Ortolani, Barbara;Spinelli, Paolo
    • Steel and Composite Structures
    • /
    • v.24 no.2
    • /
    • pp.201-211
    • /
    • 2017
  • This study evaluates the reliability of present European codes in predicting the collapse load of columns made with perforated cold-formed steel (CFS) profiles under combined axial load and bending. To this aim, a series of experimental tests on slender open-section specimens have been performed at varying load eccentricity. Preliminarily, stub column tests have also been performed to calculate the effective section properties of the investigated profile. By comparison of experimental data with code-specified M-N strength domains, the authors demonstrate that present code formulations may underestimate the collapse load of thin-walled perforated open sections. The study is the first step of a wider experimental and numerical study aimed at better describing strength domains of perforated CFS open sections.

A Frequency Tunable Double Band-Stop Resonator with Voltage Control by Varactor Diodes

  • Wang, Yang;Yoon, Ki-Cheol;Lee, Jong-Chul
    • Journal of electromagnetic engineering and science
    • /
    • v.16 no.3
    • /
    • pp.159-163
    • /
    • 2016
  • In this paper, a frequency tunable double band-stop resonator (BSR) with voltage control by varactor diodes is suggested. It makes use of a half-wavelength shunt stub as its conventional basic structure, which is replaced by the distributed LC block. Taking advantage of the nonlinear relationship between the frequency and electrical length of the distributed LC block, a dual-band device can be designed easily. With two varactor diodes, the stop-band of the resonator can be easily tuned by controlling the electrical length of the resonator structure. The measurement results show the tuning ranges of the two operating frequencies to be 1.82 GHz to 2.03 GHz and 2.81 GHz to 3.03 GHz, respectively. The entire size of the resonator is $10mm{\times}11mm$, which is very compact.