• Title/Summary/Keyword: Strut type

Search Result 71, Processing Time 0.026 seconds

Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis

  • Chen, Lian-meng;Hu, Dong;Deng, Hua;Cui, Yu-hong;Zhou, Yi-yi
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1031-1043
    • /
    • 2016
  • Optimization of the construction scheme of the cable-strut tensile structure based on error sensitivity analysis is studied in this paper. First, the element length was extracted as a fundamental variable, and the relationship between element length change and element internal force was established. By setting all pre-stresses in active cables to zero, the equation between the pre-stress deviation in the passive cables and the element length error was obtained to analyze and evaluate the error effects under different construction schemes. Afterwards, based on the probability statistics theory, the mathematical model of element length error is set up. The statistical features of the pre-stress deviation were achieved. Finally, a cable-strut tensile structure model with a diameter of 5.0 m was fabricated. The element length errors are simulated by adjusting the element length, and each member in one symmetrical unit was elongated by 3 mm to explore the error sensitivity of each type of element. The numerical analysis of error sensitivity was also carried out by the FEA model in ANSYS software, where the element length change was simulated by implementing appropriate temperature changes. The theoretical analysis and experimental results both indicated that different elements had different error sensitivities. Likewise, different construction schemes had different construction precisions, and the optimal construction scheme should be chosen for the real construction projects to achieve lower error effects, lower cost and greater convenience.

Inflence of nearby structures in braced excavation (버팀굴착에서 인접 구조물의 영향평가)

  • 유일형;김형탁
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 1994.09a
    • /
    • pp.139-148
    • /
    • 1994
  • Rapid industrialization and urbanization caused by the high economic growth of the country requires optimization of land usage as well as the expansion of underground space. Therefore the construction of large and deep basements is inevitable in built up areas where the braced excavation for earth retaining structures may create many problems such as settlement and damages of nearby buildings and underground utilities. In this work, some of major influential factors concerning the stability of braced excavation are investigated and the results are compared with the field observation results. The ground water table, applied strut forces, horezontal wall displacement, infilling materials in the rock joints were found to be the most critical factors influencing the stability of braced walls constructed in the layered ground. Magnituide and type of the wall deformation was closely related to the pattern of the surface settlement. The stability of braced walls are described in terms of strut forces.

  • PDF

Design of Expansion Segment of Precast Prestressed Concrete Segmental Box Girder bridges Using Strut and Tie Model (스트럿 타이 모델을 이용한 프리캐스터 프리스트레스 콘크리트 세그멘탈 박스 거더 교량의 신축이음 세그멘트이 설계기법 연구)

  • 오병환;이형준;김익현;한승환
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.268-273
    • /
    • 1995
  • In recent years, precast prestressed concrete segmental box girder bridges have been increasingly constructed Expansion disphragm segment of this type bridge transfers forces from the superstructure onto bearing or column, and plays an important roll of anchorage zone for longitudinal prestressed forces. Non-linear stresses occur inside of diaphragms by these extensive concentrated forces. In this study, the strut-and-tie models are proposed to design an expansion segment rationally. A formula to determine the effective transverse prestressed forces is proposed on the basis of these models. The present study is expected to provide an effective tool to design expansion segment of prestressed concrete bridges rationally.

  • PDF

Shear Test II on New Modified Double Tee Slabs including Service Ducts at the Ends (단부에 설비덕트를 포함하는 새로운 더블티 전단실험II)

  • Kim Yun Soo;Ryu Jeong Wook;Lee Bo Kyung;Yu Sung Yong
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.267-270
    • /
    • 2005
  • The section of double-tee is considered as one of the most efficient type for flexure. However, the depth of it is bigger then that of other slab systems. The story height of it is also increased because the duct space is required under the double tee in addition to their net depth. Thus, a new modified double-tees with the nib length of 1.58m was suggested in this study. The story height of this one is reduced up to 450mm by including duct space under the nib at the ends of slab. The four ends of the modified two single tees were designed by strut-tie models. Shear tests were performed on them to verify the safety. The ultimate shear strengths of non-prestressed two specimens were larger than the design shear strength by strut-tie models. They were failed in ductile with many distributed flexural crackings. However, the other prestressed two specimens showed much stiffer behaviors, less deflection. and strength than those of prestressed.

  • PDF

The Behavior of Retention Wall By 3-D Finite Element Method (3차원 유한요소해석에 의한 흙막이 벽체의 거동특성)

  • 이진구;장서만;전성곤;이종규
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.347-354
    • /
    • 2001
  • In this study, 3-D FEM analysis are carried out to investigate the effect of the corners and re-entrant corners which can't be analysed by 2-D analysis. The excavation shape is re-entrant type conditions. The wall displacement, earth pressure and effectiveness of the corner struts are investigated in the re-entrant case, The 3D analysis are peformed to evaluate the effect of various factors, such as re-entrant corner size, excavation depth, and presence of struts. The wall displacement and earth pressures are influenced the size of re-entrant corner. Therefore, the effect of re-entrant corner should be considered in the evaluation of the earth pressure and displacement of the corners. Finally, strut-support systems are not effective at the re-entrant corner.

  • PDF

Dimensional Syntheris and Kinematic Analysis of RSCS-SSP Spatial Mechanism with use of the Displacement Matrix Method (변위행렬법을 이용한 RSCS-SSP 공간기구의 치수합성과 운동해석)

  • 강희용
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 1997.04a
    • /
    • pp.113-118
    • /
    • 1997
  • This paper presents the dimensional synthesis and kinematic analysis of the RSCS-SSP motion generating spatial mechanism using the displacement matrix method. This type of spatial mechanisms is used for the Mcpherson suspension in small automobiles. It is modeled for the wheel bump/rebound and steering motion. First, the suspension is modeled as a multiloop spatial rigid body guidance mechanism for the two major motions. Then the design equations for SSP, RS, and SC strut links are applied to synthesize an RSCS-SSP for up to three prescribed positions for the steering motiom from the suspension design specification. Thus a RSCS-SSP mechanism which is synthesized is also analyzed for the displacement during the steering motion.

  • PDF

Characteristics for Horizontal Displacement of Temporary Earth Retaining Wall on Marine Sediments (해성퇴적층 지반의 가시설토류벽 수평변위 특성에 관한 연구)

  • Kim, Younghun;Kim, Chanki;Choi, Sungyeol;Chun, Byungsik
    • Journal of the Korean GEO-environmental Society
    • /
    • v.11 no.11
    • /
    • pp.37-45
    • /
    • 2010
  • In this study, the value of numerical analysis was compared to the measured value of horizontal displacement during construction. And also, the value was reviewed by comparing with numbers calculated by SUNEX program and EXCAV program. When comparing to suggested values of the maximum horizontal displacement in clayey layer, the displacement caused by the IPS system is larger than one by the Strut girder type system. When comparing the result of SUNEX program to that of EXCAV program, the SUNEX program interprets larger value. It could be concluded the result of SUNEX program is closer to the suggested value, 0.5%H, in clayey layer. The result also shows that the internal friction angle(${\Phi}$) is the key factor of developing horizontal displacement rather than type of supporting systems or materials. That means small horizontal displacement occurs in sandy layer having large value of the internal friction angle, whereas vice versa in clayey layer having small value of the internal friction angle. Therefore, the result of EXCAV program is larger in sandy layer and vice versa in clayey layer. When comparing the measured result during construction to the value of 0.5%H, the measured result is 1.4 times greater than the value of 0.5%H. In contrast, the result of SUNEX program is only 78.1% of the value of 0.5%H and the one of EXCAV program is just 18.1% of that. This result shows the calculated value by SUNEX or EXCAV program is smaller than the observed value by measuring during construction. In result, more careful attention is needed to determine the behavior of the ground. To better analyze the behavior of the ground, more precise finite element method is required.

The Compressive Characteristics of The Convex Type Wire-woven Bulk Kagome Truss PCM (볼록형 와이어 직조 카고메 트러스 PCM의 압축특성평가)

  • Li, Ming-Zhen;Kang, Ki-Ju
    • Proceedings of the KSME Conference
    • /
    • 2008.11a
    • /
    • pp.138-143
    • /
    • 2008
  • Recently, a new periodic cellular metal(PCM) named as Wire wove Bulk Kagome(WBK) was introduced. Based on the shape of tetrahedra composing a WBK, WBKs are classified into two types, namely, concave and convex type. They are easily differentiated by changing the assembling sequence. The effect of geometrical parameters such as the wire diameter, strut length and number of layers on the compressive behavior of concave type WBK has already been investigated. In this work, the similar works were performed with the convex type WBKs. It was shown that the compressive strength of the convex type WBK was quite similar to that of the concave type. The compressive strengths of convex type specimens also depend on the slenderness ratio, but a little different from those of concave type specimens in the detailed behavior. And densification occurs earlier than the concave type WBK.

  • PDF

The effect of cyclic loading on the rubber bearing with slit damper devices based on finite element method

  • Saadatnia, Mahdi;Riahi, Hossein Tajmir;Izadinia, Mohsen
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.215-222
    • /
    • 2020
  • In this paper, slit steel rubber bearing is presented as an innovative seismic isolator device. In this type of isolator, slit steel damper is an energy dissipation device. Its advantages in comparison with that of the lead rubber bearing are its simplicity in manufacturing process and replacement of its yielding parts. Also, slit steel rubber bearing has the same ability to dissipate energy with smaller value of displacement. Using finite element method in ABAQUS software, a parametric study is done on the performance of this bearing. Three different kinds of isolator with three different values of strut width, 9, 12 and 15 mm, three values of thickness, 4, 6 and 8 mm and two steel types with different yield stress are assessed. Effects of these parameters on the performance characteristics of slit steel rubber bearing are studied. It is shown that by decreasing the thickness and strut width and by selecting the material with lower yield stress, values of effective stiffness, energy dissipation capacity and lateral force in the isolator reduce but equivalent viscous damping is not affected significantly. Thus, by choosing appropriate values for thickness, strut width and slit steel damper yield stress, an isolator with the desired behavior can be achieved. Finally, the performance of an 8-storey frame with the proposed isolator is compared with the same frame equipped with LRB. Results show that SSRB is successful in base shear reduction of structure in a different way from LRB.

Computer Simulation for Working Condition of Undergroundwork Using TOP DOWN Technique (TOP DOWN 지하공사의 작업환경체크 컴퓨터시물레이션에 관한 기초적 연구)

  • 고성석;손기상;심경수
    • Journal of the Korean Society of Safety
    • /
    • v.10 no.3
    • /
    • pp.96-105
    • /
    • 1995
  • The better industry develops, the more spaces need but in the limited area. Most building become larger and more complicated if the more spaces need in the constant area. And this leads to do underground work in long period generally six(6) months for 6 basement stories due to the selection of TOP DOWN technique. Working environment in this underground area can be problems and should not be overlooked, because air quality in underground spaces become quickly worse. Recently, department name to control construction safety has been changed to ENVIRONMENT & SAFETY TEAM from SAFETY TEAM. This means that it is very important to control against environmental condition at site so much. Overall construction work as well as underground work should conform to the requirement of working environment, particularly against inhabitants around the construction area. Strut protection, one of earth protection method, in case to 40m long strut may become weaker due to thermal stress or its longitudinally compressive strain and the another one, earth anchor protection may not be applied to the site In case of encroaching on vertical underground borderline because of regulation to prohibit it. It is necessary that TOP DOWN technique should be introduced in order to solve the external and internal problem of the site such as difficulty level of the work, potential danger with excavating depth, and shortening workperiod. It is needed that improving way of working condition should be shown and simplified computer simulation program should be also provided for checking pollution level & ventilation, excluding of lighting problem here. Results measured with conformance to the Regulation for Working Environment Measurement, enforced by Ministry of Labor have been applied to the computer program developed here. Sample air taken at unit workplace which was considered as exposing condition of pollutant at breathing point and within a range of behavior of the workers, Identified exposing group in underground work, using Moded Flow Life Finally, three types of ventilation system, type I with blower & ventilator, type II natural supply with mechanical ventilation system, and type I mechanical ventilation with Drivent Fan Unit System are selected for this study.

  • PDF