• Title/Summary/Keyword: Strut angle

Search Result 46, Processing Time 0.027 seconds

Determination of inclination of strut and shear strength using variable angle truss model for shear-critical RC beams

  • Li, Bing;Tran, Cao Thanh Ngoc
    • Structural Engineering and Mechanics
    • /
    • v.41 no.4
    • /
    • pp.459-477
    • /
    • 2012
  • This paper attempts to determine the inclination of the compression strut within variable angle truss models for RC beams loaded in shear-flexure through a proposed semi-analytical approach. A truss unit is used to analyze a reinforced concrete beam, by the principle of virtual work under the truss analogy. The inclination of the compression strut is then theoretically derived. The concrete contribution is addressed by utilizing the compatibility condition within each truss unit. Comparisons are made between the predicted and published experimental results of the seventy one RC beams with respect to the shear strength and the inclined angle of the compression strut at this state to investigate the adequacy of the proposed semi-analytical approach.

L-Shaped Columellar Strut in East Asian Nasal Tip Plasty

  • Dhong, Eun-Sang;Kim, Yeon-Jun;Suh, Man Koon
    • Archives of Plastic Surgery
    • /
    • v.40 no.5
    • /
    • pp.616-620
    • /
    • 2013
  • Background Nasal tip support is an essential consideration for rhinoplasty in East Asians. There are many techniques to improve tip projection, and among them, the columellar strut is the most popular technique. However, the conventional design is less supportive for rotating the tip. The amount of harvestable septal cartilage is relatively small in East Asians. For an optimal outcome, we propose an L-shaped design for applying the columellar strut. Methods To evaluate the anthropometric outcomes, the change in nasal tip projection and the columella-labial angle were analyzed by comparing preoperative and postoperative photographs. The anthropometric study group consisted of 25 patients who underwent the same operative technique of an L-shaped strut graft using septal cartilage and were followed up for more than 9 months. Results There were statistically significant differences between the preoperative and postoperative values in the nasal tip projection ratio and columella-labial angle. We did not observe any complications directly related to the L-shaped columellar strut in the anthropometric study group. Conclusions The L-shaped columellar strut has advantages not only in the controlling of tip projection and rotation, but in that it needs a smaller amount of cartilage compared to the conventional septal extension graft. It can therefore be an alternative technique for nasal tip plasty when there is an insufficient amount of harvestable septal cartilage.

Numerical method for the strength of two-dimensional concrete struts

  • Yun, Y.M.
    • Computers and Concrete
    • /
    • v.28 no.6
    • /
    • pp.621-634
    • /
    • 2021
  • For the reliable strut-and-tie model (STM) design of disturbed regions of concrete members, structural designers must accurately determine the strength of concrete struts to check the strength conditions of a selected STM el and the anchorage of reinforcing bars in nodal zones. In this study, the author proposed a consistent numerical method for strut strength, applicable to all two-dimensional STMs. The proposed method includes the effects of a biaxial stress state associated with tensile strains in reinforcing bars crossing a strut, deviation angle between strut orientation and compressive principal stress flow, and degree of confinement provided by reinforcement. The author examined the method's validity through the STM prediction of the ultimate strengths of 517 reinforced concrete (RC) deep beams, 24 RC panels, and 258 RC corbels, all tested to failure.

Metallic Damper Shape and Cyclic Behavior for the Seismic Capacity Improvement of Building Structures (건축구조물의 내진성능 향상을 위한 강재댐퍼 형상 및 이력 거동)

  • Lee, Hyun-Ho;Kim, Seh-Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.14 no.3
    • /
    • pp.123-130
    • /
    • 2010
  • The aim of this paper is a seismic performance evaluation of metallic damper devices which are efficient in workability and installation process. For this V shape and S shape dampers is considered. The strut figures of dampers are V shape and S shape and, the research parameters are strut height and angle of the dampers. ABAQUS program is used for nonlinear finite element analysis. The analysis is performed with the hysteretic curve that has maximum displacement with 50mm and has increased progressive. As a results of evaluating the yield strength, maximum strength and energy dissipation capacity of each device, V and S shape have a good strength capacity and the devices with strut angle $60^{\circ}$ and strut height 140 and 200mm are evaluated stable in seismic behaviors. The response of S shape is more efficient than that of V shape. In the yield strength estimation process, proposed formula can not estimate the yield strength of V and S shape dampers. Even though, the formula can not consider the variation of strut heights and strut angles. Finally the S shape damper is recommended in seismic performance than V shape damper.

Free-Surface Effects on a Fin Attached to a Submerged Body (잠수체 벽에 부착된 핀의 자유표면 효과에 관한 실험적 연구)

  • Kim, S.M.;Lee, S.J.;Lee, C.M.
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.33 no.1
    • /
    • pp.27-39
    • /
    • 1996
  • The effects of free surface and a strut on the lifting characteristics on a fin attached at the mid-chord of the strut are investigated experimentally in a circulating water channel. Variation of lift force on the fin is investigated with respect to free stream velocity(V), angle of attack of the fin(${\alpha}$) and ratio of the submergence depth of the fin to the chord of the fin(H/C). Attentions are focused on the lifting characteristics of the fin at shallow depths of submergence. Visualization of the free surface deformation along the strut and of the streamline about the fin is made in order to examine the inflow angle to the fin. Lift force on the fin alone i.e. in absence of the strut is also measured to investigate the difference in lifting characteristics of the fin caused by the strut. The results show that lift forces over the fin are largely affected by a free surface in the case of small submergence ratios(HiC<3.0). For HiC>5.0, the effects of the free surface are negligibly small. The inflow angle to the fin is significantly influenced by the strut and flow speed at the shallow depths of submergence. The deformation of the free surface is largely governed by the waves generated by the strut. However, for small submergence depths, the effects of the fin are found also significant.

  • PDF

Evaluation on Hysteretic Behaviors of V Shaped Metallic Dampers (V형 강재댐퍼의 이력특성 평가)

  • Lee, Hyun Ho;Kim, Seh Il
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.15 no.1
    • /
    • pp.254-262
    • /
    • 2011
  • The purpose of this study is the development of V shaped metallic damper, which is superior than slit damper in energy dissipation capacity. For this purpose, 9 metallic damper specimens were prepared and shear testing were performed. According to test results, the V shaped metallic damper with strut height of 270mm and strut angle of $60^{\circ}$ shows a better seismic performance than any other specimens. The result of comparison with the yield strength of the dampers using the existing strength formula shows that V type metal dampers were highly evaluated than others within analyzing existing experimental result.

Stability Analysis and Reinforced Design Method of Excavation Slopes (굴착사면의 안정해석과 보강설계법)

  • 강예묵;이달원;조재홍
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.38 no.5
    • /
    • pp.140-154
    • /
    • 1996
  • In this study, displacement, deformation, and stability according to change of cohesion and internal friction angle were investigated through elasto-plastic method, finite-element method, and in-site experiment when excavating soft ground using sheet pile. The results of the study were as follows : 1. The horizontal displacement was 5.5% of the excavation depth by the elasto-plastic method and 3.9% of the excavation depth by the on-site experiment at the final excavation depth(GL-8.Om) on the condition of double stair strut after excavating GL-6.Om. 2. Relationships between cohesion(c) and internal friction angle $({\varphi})$ when safety factor to the penetration depth was 1.2 is shown in the following equations : (a) c= -O.0086$({\varphi})$+ O.3(D=3m) and (b) c=-0.00933$({\varphi})$+0.14(D=4m). 3. The results of elasto-plastic method and the experiment show that possible excavation depth was GL-6.Om after setting single stair strut in a short period in terms of possibility of carrying out on the condition of experimental site on the contrary general reinforcement method, setting double stair strut after excavating GL-4.0m. 4. After setting the strut, distribution of the horizontal displacement had concentrated on the excavation base and possible local failure which the shear strain caused decreased by the strut reinforced. 5. After setting strut, displacement of sheet pile was decreased by half, the limit of stable excavation depth of ground was GL-8.Om, and the maximum horizontal displacement at the GL-8.Om was 1.6% of excavation depth by the elasto-plastic method, 0.7% of excavation depth by the finite-element method.

  • PDF

A stress field approach for the shear capacity of RC beams with stirrups

  • Domenico, Dario De;Ricciardi, Giuseppe
    • Structural Engineering and Mechanics
    • /
    • v.73 no.5
    • /
    • pp.515-527
    • /
    • 2020
  • This paper presents a stress field approach for the shear capacity of stirrup-reinforced concrete beams that explicitly incorporates the contribution of principal tensile stresses in concrete. This formulation represents an extension of the variable strut inclination method adopted in the Eurocode 2. In this model, the stress fields in web concrete consist of principal compressive stresses inclined at an angle θ combined with principal tensile stresses oriented along a direction orthogonal to the former (the latter being typically neglected in other formulations). Three different failure mechanisms are identified, from which the strut inclination angle and the corresponding shear strength are determined through equilibrium principles and the static theorem of limit analysis, similar to the EC-2 approach. It is demonstrated that incorporating the contribution of principal tensile stresses of concrete slightly increases the ultimate inclination angle of the compression struts as well as the shear capacity of reinforced concrete beams. The proposed stress field approach improves the prediction of the shear strength in comparison with the Eurocode 2 model, in terms of both accuracy (mean) and precision (CoV), as demonstrated by a broad comparison with more than 200 published experimental results from the literature.

Analytical method for the out-of-plane buckling of the jib system with middle strut

  • Wang, T.F.;Lu, N.L.;Lan, P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.963-980
    • /
    • 2016
  • The jib system with middle strut is widely used to achieve the large arm length in the large scale tower crane and the deployability in the mobile construction crane. In this paper, an analytical solution for the out-of-plane buckling of the jib system with middle strut is proposed. To obtain the analytical expression of the buckling characteristic equation, the method of differential equation was adopted by establishing the bending and torsional differential equation of the jib system under the instability critical state. Compared with the numerical solutions of the finite element software ANSYS, the analytical results in this work agree well with them. Therefore, the correctness of the results in this work can be confirmed. Then the influences of the lateral stiffness of the cable fixed joint, the dip angle of the strut, the inertia moment of the strut, and the horizontal position of the cable fixed joint on the out-of-plane buckling behavior of the jib system were investigated.

Operative Treatment with Intramedullary Fibular Strut Allograft for Osteoporotic Proximal Humerus Fracture

  • Chun, Yong-Min;Lee, Wonyong
    • Clinics in Shoulder and Elbow
    • /
    • v.20 no.2
    • /
    • pp.95-99
    • /
    • 2017
  • Background: The purpose of this study was to investigate the clinical and radiological outcomes of locking plate fixation with fibular strut allograft to manage unstable osteoporotic proximal humerus fractures. Methods: We retrospectively reviewed 15 patients who underwent open reduction and locking plate fixation with fibular strut allograft for osteoporotic proximal humerus fracture between July 2011 and June 2015. For functional evaluation, we evaluated visual analogue scale (VAS) pain score, American Shoulder and Elbow Surgeons (ASES) score, University of California Los Angeles (UCLA) shoulder score, and active range of motion. For radiological evaluation, shoulder true anteroposterior (AP) and AP in $20^{\circ}$ external rotation, as well as the axillary view were taken at two weeks, six weeks, three months, six months, and one year. And the neck-shaft angle was measured on the AP view in $20^{\circ}$ external rotation view. Results: At the one-year follow-up, mean VAS pain score and all shoulder scores, including ASES score and UCLA shoulder score, exhibited satisfactory clinical outcomes. All patients obtained bone union between three and six months post-procedure. Moreover, the mean immediate postoperative neck-shaft angle was $138^{\circ}{\pm}4^{\circ}$, and at one-year follow-up, the neck shaft angle was $137^{\circ}{\pm}5^{\circ}$. There was no significant difference between the preoperative and postoperative values (p=0.105). Conclusions: For the unstable two-part and three-part osteoporotic proximal humerus fractures with medial calcar comminution, the use of fibular strut allograft with locking plate fixation was effective in maintaining the initial status of reduction and exhibiting the satisfactory functional and radiological outcomes.