• 제목/요약/키워드: Structures

검색결과 42,892건 처리시간 0.05초

Dynamic response of adjacent structures connected by friction damper

  • Patel, C.C.;Jangid, R.S.
    • Earthquakes and Structures
    • /
    • 제2권2호
    • /
    • pp.149-169
    • /
    • 2011
  • Dynamic response of two adjacent single degree-of-freedom (SDOF) structures connected with friction damper under base excitation is investigated. The base excitation is modeled as a stationary white-noise random process. As the force-deformation behavior of friction damper is non linear, the dynamic response of connected structures is obtained using the equivalent linearization technique. It is observed that there exists an optimum value of the limiting frictional force of the damper for which the mean square displacement and the mean square absolute acceleration responses of the connected structures attains the minimum value. The close form expressions for the optimum value of damper frictional force and corresponding mean square responses of the coupled undamped structures are derived. These expressions can be used for initial optimal design of the friction damper for connected structures. A parametric study is also carried out to investigate the influence of system parameters such as frequency ratio and mass ratio on the response of the coupled structures. It has been observed that the frequency ratio has significant effect on the performance of the friction damper, whereas the effects of mass ratio are marginal. Finally, the verification of the derived close from expressions is made by correlating the response of connected structures under real earthquake excitations.

자연모사기반 나노-마이크로패턴의 광 회절 및 간섭에 의한 투명기판의 구조색 구현 (Bio-inspired Structural Colors of Transparent Substrate based on Light Diffraction and Interference on Microscale and Nanoscale Structures)

  • 박용민;김병희;서영호
    • 산업기술연구
    • /
    • 제39권1호
    • /
    • pp.33-39
    • /
    • 2019
  • This paper addresses effects of nanoscale structures on structural colors of micropatterned transparent substrate by light diffraction. Structural colors is widely investigated because they present colors without any chemical pigments. Typically structural colors is presented by diffraction of light on a micropatterned surface or by multiple interference of light on a surface containing a periodic or quasi-periodic nano-structures. In this paper, each structural colors induced by quasi-periodic nano-structures, periodic micro-structures, and nano/micro dual structures is measured in order to investigate effects of nanoscale and microscale structures on structural colors in the transparent substrate. Using pre-fabricated pattern mold and hot-embossing process, nanoscale and microscale structures are replicated on the transparent PMMA(Poly methyl methacrylate) substrate. Nanoscale and microscale pattern molds are prepared by anodic oxidation process of aluminum sheet and by reactive ion etching process of silicon wafer, respectively. Structural colors are captured by digital camera, and their optical transmittance spectrum are measured by UV/visible spectrometer. From experimental results, we found that nano-structures provide monotonic colors by multiple interference, and micro-structures induce iridescent colors by diffraction of light. Structural colors is permanent and unchangeable, thus it can be used in various application field such as security, color filter and so on.

An efficient seismic analysis of regular skeletal structures via graph product rules and canonical forms

  • Kaveh, A.;Zakian, P.
    • Earthquakes and Structures
    • /
    • 제10권1호
    • /
    • pp.25-51
    • /
    • 2016
  • In this study, graph product rules are applied to the dynamic analysis of regular skeletal structures. Graph product rules have recently been utilized in structural mechanics as a powerful tool for eigensolution of symmetric and regular skeletal structures. A structure is called regular if its model is a graph product. In the first part of this paper, the formulation of time history dynamic analysis of regular structures under seismic excitation is derived using graph product rules. This formulation can generally be utilized for efficient linear elastic dynamic analysis using vibration modes. The second part comprises of random vibration analysis of regular skeletal structures via canonical forms and closed-form eigensolution of matrices containing special patterns for symmetric structures. In this part, the formulations are developed for dynamic analysis of structures subjected to random seismic excitation in frequency domain. In all the proposed methods, eigensolution of the problems is achieved with less computational effort due to incorporating graph product rules and canonical forms for symmetric and cyclically symmetric structures.

Seismic Performance of High-rise Moment-resisting RC Frame Structures with Vertical Setback

  • Jiang, Huanjun;Huang, Youlu;Li, Wannian
    • 국제초고층학회논문집
    • /
    • 제9권4호
    • /
    • pp.307-314
    • /
    • 2020
  • High-rise buildings with vertical setback are widely used in practice. From the field investigation of the past earthquakes, it was found that such kind of vertically irregular high-rise building structures easily suffer severe damage during strong earthquakes. This paper presents an extensive study on the earthquake responses of moment-resisting frame structures (MFS) popularly applied in high-rise buildings with vertical setback. Four groups of MFS are designed, including three groups of structures with vertical setback and one group of structures with the lateral stiffness varying along the building height but without vertical setback. The numerical models of the structures are established, and the time history analysis of the structures under different levels of earthquakes is conducted. The earthquake responses of the structures are compared. The influence of the ratio between the horizontal setback dimension and the previous plan dimension, the eccentricity of setback, and the position where the setback occurs on the seismic performance of structures is studied. The rationality of the provisions for the structures with vertical setback specified in the current design codes is checked by the findings from this study.

뉴질랜드 기준에서의 제한된 연성의 RC 구조물 내진설계 (Seismic Design of Reinforced Concrete Structures of Limited Ductility in New Zealand Standard)

  • 이한선
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2000년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2000
    • /
    • pp.288-295
    • /
    • 2000
  • As the level of earthquake intensity in Korea is considered to be moderate, some structures or structural elements may be subjected to the reduced ductility demand, in contrast to the structures in high seismicity, due to the large inherent strength induced by gravity loads. New Zealand Standard(NZS) deals with these structures within the category of structures of limited ductility. This paper briefly reviews the concept of structures of limited ductility in NZS, and its applicability to Korean case. A structural wall system which is used as the structural system for typical apartments is taken as an example for the illustration.

  • PDF

Wind loads for high-solidity open-frame structures

  • Amoroso, Samuel D.;Levitan, Marc L.
    • Wind and Structures
    • /
    • 제14권1호
    • /
    • pp.1-14
    • /
    • 2011
  • Open frame structures, such as those commonly found in industrial process facilities, are often densely occupied with process related equipment. This paper presents a method for estimating wind loads for high-solidity open frame structures that differs from current approaches, which accumulate wind load contributions from various individual structure components. The method considers the structure as a porous block of arbitrary plan dimension that is subject to wind from any direction. The proposed method compares favorably with wind tunnel test results for similar structures. The possibility of defining an upper bound force coefficient is also discussed.

전산유체역학을 이용한 셸 구조의 형상에 따른 풍압 평가 (The Evaluation of Wind-induced Pressure for the Shell Structures using Computational Fluid Dynamics)

  • 한상을;박지선
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2008년도 정기 학술대회
    • /
    • pp.579-584
    • /
    • 2008
  • The importance and the interest of wind load have emphasized since the damage of the Jeju World cup Stadium and Main Stadium of Busan Asiad in 2002, and the appearance of high-rise buildings. In general, a evaluation for the wind load acting on structures have been carried out mainly through the wind tunnel test, but this technique has the huge shortcomings that consume too much cost and experimental time. However, with the rapid advances on computers, it is possible to analyze the wind pressure distribution acting on structures by numerical scheme. In this paper, to predict the wind pressure distribution acting on shell structures having the various shape by numerical simulation, governing equations of fluid flow and turbulent model is formulated. Also, evaluates the wind pressure coefficient in accordance with the structural shape for shell structures like as a membrane structures and dome structures.

  • PDF

Membrane Structures - Their Characteristics and Various Applications -

  • Kawaguchi, Mamoru
    • 한국공간구조학회지
    • /
    • 제1권2호
    • /
    • pp.10-22
    • /
    • 2001
  • A few characteristics of membrane structures which the author thinks important for design are described on the basis of his experience in research and design of this kind of structures. Different in behaviors of air-supported and air-inflated structures are first explained for a better understanding of these structures. Attention is drawn to unfavorable behaviors of an air-beam when it is reinforced by diagonal members. The shallowest membrane structure which can be made as an airdome is pursued, and its application to a metal membrane dome is shown. Attempts which have been made by the author seeking for the possibility of membrane structures made of metal sheet, plastic film with and without reinforcement are described with realized examples. A 100m long jumbo carp is explained as an example of a flying membrane.

  • PDF

인공용승구조물의 수리학적 기능성에 관한 연구 (A study on hydrodynamic characteristics of artificial upwelling structures)

  • 김홍진;전용호;류청로
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2002년도 춘계학술대회 논문집
    • /
    • pp.62-67
    • /
    • 2002
  • While upwelling regions account for only 0.1% of the ocean surface, they yield over 40% of world's fish catch. Thus it is vary important making upwelling region by various methods. This study was performed to find out basic hydrodynamic characteristics (function, stability..,) of artificial upwelling structures. The hydrodynamic characteristics of artificial upwelling structures can be summarized as follows: 1) The falling velocity of blocks was effected size($l_B$) of blocks than incident current velocity( $V_0$). 2) The falling horizontal distance was reduced as induce of stratification parameters and block' size. 3) Generation of artificial upwelling current was effected by size of structures and incident current. When stratification parameters was about 3.0 and relative height(hs/h) of structures was about $0.125{\sim}0.15$, stable artificial upwelling current was generated in the back-side of structures.

  • PDF

Discrete element modeling of masonry structures: Validation and application

  • Pulatsu, Bora;Bretas, Eduardo M.;Lourenco, Paulo B.
    • Earthquakes and Structures
    • /
    • 제11권4호
    • /
    • pp.563-582
    • /
    • 2016
  • The failure mechanism and maximum collapse load of masonry structures may change significantly under static and dynamic excitations depending on their internal arrangement and material properties. Hence, it is important to understand correctly the nonlinear behavior of masonry structures in order to adequately assess their safety and propose efficient strengthening measures, especially for historical constructions. The discrete element method (DEM) can play an important role in these studies. This paper discusses possible collapse mechanisms and provides a set of parametric analyses by considering the influence of material properties and cross section morphologies on the out of plane strength of masonry walls. Detailed modeling of masonry structures may affect their mechanical strength and displacement capacity. In particular, the structural behavior of stacked and rubble masonry walls, portal frames, simple combinations of masonry piers and arches, and a real structure is discussed using DEM. It is further demonstrated that this structural analysis tool allows obtaining excellent results in the description of the nonlinear behavior of masonry structures.