• Title/Summary/Keyword: Structured pruning

Search Result 6, Processing Time 0.015 seconds

Structured Pruning for Efficient Transformer Model compression (효율적인 Transformer 모델 경량화를 위한 구조화된 프루닝)

  • Eunji Yoo;Youngjoo Lee
    • Transactions on Semiconductor Engineering
    • /
    • v.1 no.1
    • /
    • pp.23-30
    • /
    • 2023
  • With the recent development of Generative AI technology by IT giants, the size of the transformer model is increasing exponentially over trillion won. In order to continuously enable these AI services, it is essential to reduce the weight of the model. In this paper, we find a hardware-friendly structured pruning pattern and propose a lightweight method of the transformer model. Since compression proceeds by utilizing the characteristics of the model algorithm, the size of the model can be reduced and performance can be maintained as much as possible. Experiments show that the structured pruning proposed when pruning GPT-2 and BERT language models shows almost similar performance to fine-grained pruning even in highly sparse regions. This approach reduces model parameters by 80% and allows hardware acceleration in structured form with 0.003% accuracy loss compared to fine-tuned pruning.

Filter Contribution Recycle: Boosting Model Pruning with Small Norm Filters

  • Chen, Zehong;Xie, Zhonghua;Wang, Zhen;Xu, Tao;Zhang, Zhengrui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3507-3522
    • /
    • 2022
  • Model pruning methods have attracted huge attention owing to the increasing demand of deploying models on low-resource devices recently. Most existing methods use the weight norm of filters to represent their importance, and discard the ones with small value directly to achieve the pruning target, which ignores the contribution of the small norm filters. This is not only results in filter contribution waste, but also gives comparable performance to training with the random initialized weights [1]. In this paper, we point out that the small norm filters can harm the performance of the pruned model greatly, if they are discarded directly. Therefore, we propose a novel filter contribution recycle (FCR) method for structured model pruning to resolve the fore-mentioned problem. FCR collects and reassembles contribution from the small norm filters to obtain a mixed contribution collector, and then assigns the reassembled contribution to other filters with higher probability to be preserved. To achieve the target FLOPs, FCR also adopts a weight decay strategy for the small norm filters. To explore the effectiveness of our approach, extensive experiments are conducted on ImageNet2012 and CIFAR-10 datasets, and superior results are reported when comparing with other methods under the same or even more FLOPs reduction. In addition, our method is flexible to be combined with other different pruning criterions.

An Adaptive Pruning Threshold Algorithm for the Korean Address Speech Recognition (한국어 주소 음성인식의 고속화를 위한 적응 프루닝 문턱치 알고리즘)

  • 황철준;오세진;김범국;정호열;정현열
    • The Journal of the Acoustical Society of Korea
    • /
    • v.20 no.7
    • /
    • pp.55-62
    • /
    • 2001
  • In this paper, we propose a new adaptative pruning algorithm which effectively reduces the search space during the recognition process. As maximum probabilities between neighbor frames are highly interrelated, an efficient pruning threshold value can be obtained from the maximum probabilities of previous frames. The main idea is to update threshold at the present frame by a combination of previous maximum probability and hypotheses probabilities. As present threshold is obtained in on-going recognition process, the algorithm does not need any pre-experiments to find threshold values even when recognition tasks are changed. In addition, the adaptively selected threshold allows an improvement of recognition speed under different environments. The proposed algorithm has been applied to a Korean Address recognition system. Experimental results show that the proposed algorithm reduces the search space of average 14.4% and 9.14% respectively while preserving the recognition accuracy, compared to the previous method of using fixed pruning threshold values and variable pruning threshold values.

  • PDF

Implementation of FPGA-based Accelerator for GRU Inference with Structured Compression (구조적 압축을 통한 FPGA 기반 GRU 추론 가속기 설계)

  • Chae, Byeong-Cheol
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.26 no.6
    • /
    • pp.850-858
    • /
    • 2022
  • To deploy Gate Recurrent Units (GRU) on resource-constrained embedded devices, this paper presents a reconfigurable FPGA-based GRU accelerator that enables structured compression. Firstly, a dense GRU model is significantly reduced in size by hybrid quantization and structured top-k pruning. Secondly, the energy consumption on external memory access is greatly reduced by the proposed reuse computing pattern. Finally, the accelerator can handle a structured sparse model that benefits from the algorithm-hardware co-design workflows. Moreover, inference tasks can be flexibly performed using all functional dimensions, sequence length, and number of layers. Implemented on the Intel DE1-SoC FPGA, the proposed accelerator achieves 45.01 GOPs in a structured sparse GRU network without batching. Compared to the implementation of CPU and GPU, low-cost FPGA accelerator achieves 57 and 30x improvements in latency, 300 and 23.44x improvements in energy efficiency, respectively. Thus, the proposed accelerator is utilized as an early study of real-time embedded applications, demonstrating the potential for further development in the future.

Efficient Query Retrieval from Social Data in Neo4j using LIndex

  • Mathew, Anita Brigit
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2211-2232
    • /
    • 2018
  • The unstructured and semi-structured big data in social network poses new challenges in query retrieval. This requirement needs to be met by introducing quality retrieval time measures like indexing. Due to the huge volume of data storage, there originate the need for efficient index algorithms to promote query processing. However, conventional algorithms fail to index the huge amount of frequently obtained information in real time and fall short of providing scalable indexing service. In this paper, a new LIndex algorithm, which is a heuristic on Lucene is built on Neo4jHA architecture that holds the social network Big data. LIndex is a flexible and simplified adaptive indexing scheme that ascendancy decomposed shortest paths around term neighbors as basic indexing unit. This newfangled index proves to be effectual in query space pruning of graph database Neo4j, scalable in index construction and deployment. A graph query is processed and optimized beyond the traditional Lucene in a time-based manner to a more efficient path method in LIndex. This advanced algorithm significantly reduces query fetch without compromising the quality of results in time. The experiments are conducted to confirm the efficiency of the proposed query retrieval in Neo4j graph NoSQL database.

An Efficient Path Expression Join Algorithm Using XML Structure Context (XML 구조 문맥을 사용한 효율적인 경로 표현식 조인 알고리즘)

  • Kim, Hak-Soo;Shin, Young-Jae;Hwang, Jin-Ho;Lee, Seung-Mi;Son, Jin-Hyun
    • The KIPS Transactions:PartD
    • /
    • v.14D no.6
    • /
    • pp.605-614
    • /
    • 2007
  • As a standard query language to search XML data, XQuery and XPath were proposed by W3C. By widely using XQuery and XPath languages, recent researches focus on the development of query processing algorithm and data structure for efficiently processing XML query with the enormous XML database system. Recently, when processing XML path expressions, the concept of the structural join which may determine the structural relationship between XML elements, e.g., ancestor-descendant or parent-child, has been one of the dominant XPath processing mechanisms. However, structural joins which frequently occur in XPath query processing require high cost. In this paper, we propose a new structural join algorithm, called SISJ, based on our structured index, called SI, in order to process XPath queries efficiently. Experimental results show that our algorithm performs marginally better than previous ones. However, in the case of high recursive documents, it performed more than 30% by the pruning feature of the proposed method.