• Title/Summary/Keyword: Structured model

Search Result 1,353, Processing Time 0.03 seconds

Adjusting Edit Scripts on Tree-structured Documents (트리구조의 문서에 대한 편집스크립트 조정)

  • Lee, SukKyoon;Um, HyunMin
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.24 no.2
    • /
    • pp.1-14
    • /
    • 2019
  • Since most documents used in web, XML, office applications are tree-structured, diff, merge, and version control for tree-structured documents in multi-user environments are crucial tasks. However research on edit scripts which is a basis for them is in primitive stage. In this paper, we present a document model for understanding the change of tree-structured documents as edit scripts are executed, and propose a method of switching adjacent edit operations on tree-structured documents based on the analysis of the effects of edit operations. Mostly, edit scripts which are produced as the results of diff on tree-structured documents only consist of basic operations such as update, insert, delete. However, when move and copy are included in edit scripts, because of the characteristics of their complex operation, it is often that edit scripts are generated to execute in two passes. In this paper, using the proposed method of switching edit operations, we present an algorithm of transforming the edit scripts of X-treeESgen, which are designed to execute in two passes, into the ones that can be executed in one pass.

A Machine Learning-Based Vocational Training Dropout Prediction Model Considering Structured and Unstructured Data (정형 데이터와 비정형 데이터를 동시에 고려하는 기계학습 기반의 직업훈련 중도탈락 예측 모형)

  • Ha, Manseok;Ahn, Hyunchul
    • The Journal of the Korea Contents Association
    • /
    • v.19 no.1
    • /
    • pp.1-15
    • /
    • 2019
  • One of the biggest difficulties in the vocational training field is the dropout problem. A large number of students drop out during the training process, which hampers the waste of the state budget and the improvement of the youth employment rate. Previous studies have mainly analyzed the cause of dropouts. The purpose of this study is to propose a machine learning based model that predicts dropout in advance by using various information of learners. In particular, this study aimed to improve the accuracy of the prediction model by taking into consideration not only structured data but also unstructured data. Analysis of unstructured data was performed using Word2vec and Convolutional Neural Network(CNN), which are the most popular text analysis technologies. We could find that application of the proposed model to the actual data of a domestic vocational training institute improved the prediction accuracy by up to 20%. In addition, the support vector machine-based prediction model using both structured and unstructured data showed high prediction accuracy of the latter half of 90%.

Robust Online Object Tracking with a Structured Sparse Representation Model

  • Bo, Chunjuan;Wang, Dong
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.10 no.5
    • /
    • pp.2346-2362
    • /
    • 2016
  • As one of the most important issues in computer vision and image processing, online object tracking plays a key role in numerous areas of research and in many real applications. In this study, we present a novel tracking method based on the proposed structured sparse representation model, in which the tracked object is assumed to be sparsely represented by a set of object and background templates. The contributions of this work are threefold. First, the structure information of all the candidate samples is utilized by a joint sparse representation model, where the representation coefficients of these candidates are promoted to share the same sparse patterns. This representation model can be effectively solved by the simultaneous orthogonal matching pursuit method. In addition, we develop a tracking algorithm based on the proposed representation model, a discriminative candidate selection scheme, and a simple model updating method. Finally, we conduct numerous experiments on several challenging video clips to evaluate the proposed tracker in comparison with various state-of-the-art tracking algorithms. Both qualitative and quantitative evaluations on a number of challenging video clips show that our tracker achieves better performance than the other state-of-the-art methods.

Lifetime Distribution Model for a k-out-of-n System with Heterogeneous Components via a Structured Markov Chain (구조화 마코프체인을 이용한 이종 구성품을 갖는 k-out-of-n 시스템의 수명분포 모형)

  • Kim, Heungseob
    • Journal of Applied Reliability
    • /
    • v.17 no.4
    • /
    • pp.332-342
    • /
    • 2017
  • Purpose: In this study, the lifetime distribution of a k-out-of-n system with heterogeneous components is suggested as Markov model, and the time-to-failure (TTF) distribution of each component is considered as phase-type distribution (PHD). Furthermore, based on the model, a redundancy allocation problem with a mix of components (RAPMC) is proposed. Methods: The lifetime distribution model for the system is formulated by the structured Markov chain. From the model, the various information on the system lifetime can be ascertained by the matrix-analytic (or-geometric) method. Conclusion: By the generalization of TTF distribution (PHD) and the consideration of heterogeneous components, the lifetime distribution model can delineate many real systems and be exploited for developing system operation policies such as preventive maintenance, warranty. Moreover, the effectiveness of the proposed RAPMC is verified by numerical experiments. That is, under the equivalent design conditions, it presented a system with higher reliability than RAP without component mixing (RAPCM).

The Impact of Transforming Unstructured Data into Structured Data on a Churn Prediction Model for Loan Customers

  • Jung, Hoon;Lee, Bong Gyou
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.14 no.12
    • /
    • pp.4706-4724
    • /
    • 2020
  • With various structured data, such as the company size, loan balance, and savings accounts, the voice of customer (VOC), which is text data containing contact history and counseling details was analyzed in this study. To analyze unstructured data, the term frequency-inverse document frequency (TF-IDF) analysis, semantic network analysis, sentiment analysis, and a convolutional neural network (CNN) were implemented. A performance comparison of the models revealed that the predictive model using the CNN provided the best performance with regard to predictive power, followed by the model using the TF-IDF, and then the model using semantic network analysis. In particular, a character-level CNN and a word-level CNN were developed separately, and the character-level CNN exhibited better performance, according to an analysis for the Korean language. Moreover, a systematic selection model for optimal text mining techniques was proposed, suggesting which analytical technique is appropriate for analyzing text data depending on the context. This study also provides evidence that the results of previous studies, indicating that individual customers leave when their loyalty and switching cost are low, are also applicable to corporate customers and suggests that VOC data indicating customers' needs are very effective for predicting their behavior.

Influence of TVD Schemes on the Spatial Accuracy of Turbulent Flows Around a Hull When Using Structured and Unstructured Grids (정렬 및 비정렬 격자를 이용한 선체 주위 유동에서 TVD 기법이 공간 정확도에 미치는 영향)

  • Sim, Min Gyeoung;Lee, Sang Bong
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.58 no.3
    • /
    • pp.182-190
    • /
    • 2021
  • Computational simulations of turbulent flows around a model ship have been performed to investigate an influence of TVD schemes on the accuracy of advective terms associated with ship resistances. Several TVD schemes including upwind, second-order upwind, vanLeer, and QUICK as well as a nonTVD linear scheme were studied by examining temporal and spatial characteristics of accuracy transition in adjacent cells to the hull. Even though vanLeer scheme was the most accurate among TVD schemes in both structured and unstructured grid systems, the ratio of accuracy switch from 2nd order to 1st order in vanLeer scheme was considerable compared with the 2nd order linear scheme. Also, the accuracy transition was observed to be overally scattered in the unstructured grid while the accuracy transition in the structured grid appeared relatively clustered. It concluded that TVD schemes had to be carefully used in computational simulations of turbulent flows around a model ship due to the loss of accuracy despite its attraction of numerical stability.

Three dimensional reconstruction and measurement of underwater spent fuel assemblies

  • Jianping Zhao;Shengbo He;Li Yang;Chang Feng;Guoqiang Wu;Gen Cai
    • Nuclear Engineering and Technology
    • /
    • v.55 no.10
    • /
    • pp.3709-3715
    • /
    • 2023
  • It is an important work to measure the dimensions of underwater spent fuel assemblies in the nuclear power industry during the overhaul, to judging whether the spent fuel assemblies can continue to be used. In this paper, a three dimensional reconstruction method for underwater spent fuel assemblies of nuclear reactor based on linear structured light is proposed, and the topography and size measurement was carried out based on the reconstructed 3D model. Multiple linear structured light sensors are used to obtain contour size data, and the shape data of the whole spent fuel assembly can be collected by one-dimensional scanning motion. In this paper, we also presented a corrected model to correct the measurement error introduced by lead-glass and water is corrected. Then, we set up an underwater measurement system for spent fuel assembly based on this method. Finally, an underwater measurement experiment is carried out to verify the 3D reconstruction ability and measurement ability of the system, and the measurement error is less than ±0.05 mm.

Feature Recognition and Segmentation via Z-map in Reverse Engineering (역공학에서 Z-map을 이용한 특징형상 탐색 및 영역화)

  • 김재현;신양호;박정환;고태조;유우식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.20 no.2
    • /
    • pp.176-183
    • /
    • 2003
  • The paper presents a feature recognition and segmentation method for surface approximation in reverse engineering. Efficient digitizing plays an important role in constructing a computational surface model from a physical part-surface without its CAD model on hand. Depending on its measuring source (e.g., touch probe or structured light), each digitizing method has its own strengths and weaknesses in terms of speed and accuracy. The final goal of the research focuses on an integration of two different digitizing methods: measuring by the structured light and that by the touch probe. Gathering bulk of digitized points (j.e., cloud-of-points) by use of a laser scanning system, we construct a coarse surface model directly from the cloud-of-points, followed by the segmentation process where we utilize the z-map filleting & differencing to trace out feature boundary curves. The feature boundary curves and the approximate surface model could be inputs to further digitizing by a scanning touch probe. Finally, more accurate measuring points within the boundary curves can be obtained to construct a finer surface model.

Filter Contribution Recycle: Boosting Model Pruning with Small Norm Filters

  • Chen, Zehong;Xie, Zhonghua;Wang, Zhen;Xu, Tao;Zhang, Zhengrui
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.11
    • /
    • pp.3507-3522
    • /
    • 2022
  • Model pruning methods have attracted huge attention owing to the increasing demand of deploying models on low-resource devices recently. Most existing methods use the weight norm of filters to represent their importance, and discard the ones with small value directly to achieve the pruning target, which ignores the contribution of the small norm filters. This is not only results in filter contribution waste, but also gives comparable performance to training with the random initialized weights [1]. In this paper, we point out that the small norm filters can harm the performance of the pruned model greatly, if they are discarded directly. Therefore, we propose a novel filter contribution recycle (FCR) method for structured model pruning to resolve the fore-mentioned problem. FCR collects and reassembles contribution from the small norm filters to obtain a mixed contribution collector, and then assigns the reassembled contribution to other filters with higher probability to be preserved. To achieve the target FLOPs, FCR also adopts a weight decay strategy for the small norm filters. To explore the effectiveness of our approach, extensive experiments are conducted on ImageNet2012 and CIFAR-10 datasets, and superior results are reported when comparing with other methods under the same or even more FLOPs reduction. In addition, our method is flexible to be combined with other different pruning criterions.