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LOCAL STABILITY OF ENDEMIC STATES
FOR AN EPIDEMIC MODEL WITH
EXTERNAL FORCE OF INFECTION

YouNGJOON CHA

ABSTRACT. Local stability of steady states of an epidemic model is
considered. An age structured S-I-R epidemic model with separa-
ble inter-cohort force of infection with external force is considered.
Stability result for the nontrivial steady states is obtained.

1. Introduction

In this paper we consider the stability of steady states of an age-
structured S-I-R epidemic model with external force of infection.

In S-I-R model, the population is structured into three disjoint classes
according to disease status: susceptibles, infecteds, and removeds. Sus-
ceptibles are the individuals who are not infected with the disease but
may become infected through contact with infected individuals or by the
external force. Infecteds are the individuals who are currently infected,
and removeds are the individuals who may not contract or transmit the
disease. Removeds usually counsist of the individuals who are immunized.

Age structured S-I-R models are suitable for most common childhood
diseases (measles, chickenpox, rubella), as well as for many sexually
transmitted diseases which impart immunity (syphilis, chlamydia), and
also for those diseases, like HIV/AIDS or mad cow disease, which lead
to definitive isolation or death.

A lot of papers can be found for the S-I-R models without external
force of infection [1, 3, 4, 5, 8, 9]). Since this problem is intimately as-
sociated with the study of long-time behavior of solutions of the model,
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existing literature’s main concerns are existence, uniqueness and stabil-
ity change of the steady state solutions.

The long term behavior has some important epidemiological implica-
tions such as suggesting whether an outbreak of a particular infection
may result in an endemic situation or the infection will die out.

Recent paper (2] deals with the S-I-R model with external force as
an important part of the force of infection. Existence and uniqueness of
steady state solutions are obtained there.

Even if infection of the human disease mainly occurs between humans
through physical contacts, there are lots of other ways of infection. For
instance, one can be infected with HIV/AIDS through blood transfusion.
Mad cow disease is another good example: infected animals can be the
main source of the infection in this case.

In fact, other than infected human individuals, there are still a lot of
sources of infection. We call them external force of infection.

In this paper we shall show that the endemic state of that model is
locally asymptotically stable. Our main result will be give in section 3,
Theorem 3.1.

2. S-I-R model with external force of infection

We consider the following system of integro-differential equations.

(ds  Os
5t + %a + pla)s = —X(a, t)s,
di O . ,
5 + P + p(a)i = Xa, t)s — v(a)i,
or Or .
N + % + pla)r = y(a)i,
21 ¢

5(0,t) = /a1 B(a) (s(a,t) +7r(a,t) + (1 — q)i(a,t)) da,

0
i(0,t) = ¢ /OGJr B(a)i(a,t) da,

r(0,¢) =0,
L 1(a,0) = ig(a), s(a,0) =sp(a), r(a,0)=ro(a).

Here a is the age of individuals, and ¢ is the time. Also, s(a,t), i(a,t)
and r(a,t), respectively, denotes the age-specific density of susceptible,
infected, and removed individuals.
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B(a) is the birth rate and u(a) is the death rate of the population.
q € [0, 1] is the vertical transmission parameter, i.e. the probability that
the disease be transmitted from parent to newborn, ¥(-) is the removal
rate of infected individuals, and A(a,t) is the force of infection. Note
that since we assume the condition r(0,t) = 0, our model assumes that
there is no vertical transmission of immunity.

Our main concern is the stability of an endemic state of the model.
Endemic state is a steady state solution of the model for which the
density of infected individuals does not vanish identically (see [2]).

Summing the equations in (2.1) we obtain the following problem for
the population density p(a,t) = s(a,t) +i(a,t) + r(a, ),

op ap .

(2.2) p(0, 1) /6

p(a,0) = po(a).

This is the standard McKendrick-Von Foester equation.
We make the following usual hypotheses for this problem,

(2.3) B(:) € Lw([O,aT)), B(a) > 0in [0, ay),
(2.4) p() € Lige([0,a1)),  p(a) = 01in [0,a4),
(2.5) /0 f u(a)do = oo

Here a4 is the maximum age an individual of the population may reach
and it may be either finite or infinite. If a; = oo, we also assume that

(2.6) there exists A > 0 such that 8(a) =0 for a > A.

Furthermore, in order to deal with a steady state population, we assume
that the net reproductive rate of the population is equal to 1 and that
the total population is at an equilibrium. This means that

/ B(a ) wlo)do g, — 1, pla,t) = peo(a) = bgm(a),

(2.8) m(a) = e Jo #@)do,
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Note that the function m(a) is the probability that an individual at age
0 can survive until age a. Since no individual may live past age ay, (2.5)
is needed.

Clearly, we have to take initial data such that
(2.9)

so(a) 20, ido(a) >0, rola) >0, sola)+io(a)+ro(a) = pwla),

which gives

I3 so(a)da + ;" io(a)da + Jy rola)da
Jy m(a)da '

We also assume that
(2.11) () € L=([0,01)),  (a) >0 in [0,ay)

and consider the following form for the force of infection:
ay
(2.12) Ma,t) = K(a) / h(o)i(o, t) do + g(a),
0

where h is the age-specific infectiousness, x the age-specific contagion
rate, g the external force of infection. They satisfy the following condi-

tions:
(213
h(-), &(-), g(-) € L=([0,at)) and h(a), K(a), g(a) >0, on [0,a4).

We also assume that none of 5(-), u(+), v(-), h(-), (-), g(-) is identically
zero.

We note that by assumption (2.7), the fourth equation in (2.1) be-
comes

s(0,t) = /0 B(a) poo(a) da — ¢q /0 B(a)i(a,t)da
(2.14) =by—gq /0 B(a)i(a,t) da,

so that the equations involving the variable r(a,t) in (2.1) can be re-
moved since s(a,t) and i(a, t) are sufficient to determine the evolution of
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the whole system. Thus, in the rest of the paper, we will be concerned
with the following reduced system derived from (2.1) and (2.7):

r g;(a,t) + %(a,t) + p(a)s(a,t) = —A(a, t)s(a, t),

gz(a t) + gi(a,t) + p(a)i(a, t) = A(a, t)s(a,t) — y(a)i(a,t),

(2.15) § 5(0,¢) = by — i(0, 1),

Ot—-q/ B(a)i(a,t)d

\ i(a,0) = s(a,0) = so(a).

Now we will give a brief review of existence and uniqueness results of
the model, which are stated in [2].

First, we consider the following problem, which is obtained by remov-
ing the variable ¢ in (2.15):

(1) 24 a)s(a) = —(Jx(a) + g(a)) s(a),
i) 9 e)ila) = (Ja(a) + (@) s(a) ~1(a)i(a),

(2.16) ¢ i _ [ a)i(a)da
' / h(a)i(a) da,

iv) s(0) = by — i(0),

v =g /O " B(a)i(a) da.

It is easy to see that the problem admits the disease-free equilibrium
s*(a) = poola), t*(a) = 0, if and only if g(a) = 0. Since we are
assuming that g is not identically zero, we have to concentrate on the
search of endemic states, that is nonnegative solutions for which i*(a)
does not vanish identically.

In order to investigate the existence of such solutions, we modify
problem (2.16) by taking the following new variables, the age profiles
respectively of infecteds and susceptibles:

(217) u@ = s v(a) =
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With these definitions, problem (2.16) becomes

(1) % = —(Jr(a) + 9(a)) v(a),
i) 2= (Js(@) + 9(a) (@) ~ (@) ula),
(2.18) Sy J=by /0 " h(o) (o) u(o) do,
iv) =1-
v X=g / 8(0) (o) u(e) do

Note that integration of (2.18.i) gives
(2.19) v(a) = (1 — X)e Jo (Urlo)+g(o))do

Then, substituting (2.19) into (2.18.ii) and integrating the equation we
have

u(a) =Xe~ Jo (D47 4 (1 — X)/ (Jk(o)
0
(2.20) +g(o))e” JEA(s)ds—[5 (In(s)+g(s))ds g0
Substituting (2.19) and (2.20) into (2.18.iii) and (2.18.v) we get the

following relations,
J=XG+ (1-X)(JM(J)+ D(J)),
{ X=XR+ (1 — X)(JL(J) + C’(J)),

where we have introduced the following notation:

(2.21)

(222) G =bh /0 * ha)m(a)T(a) da,

(2.23) R=g OaT B(a)m(a) T(a) da,

(2.24)  M(J) = bo /0 " h(a) (a) F(a, J) da,
(2.25) L(J) =g OaT B(a) 7(a) F(a, J) da,

(2.26) D(J)=1by /OQT h(a)m(a) H(a, J)da,

(2.271) C(J)= q/oaT B(a) m(a) H(a, J) da,



Local stability of endemic states for an epidemic model 139

and

(2.28) T(a) = e Jo 1(0)do,

(2.29) F(a,J) = / k(0)e o Vs I3 (T()+9()ds gy
0

(2.30) H(a,J):/ g(a)e_f:V(S)ds'foq(J”(S)+g(s))dsda.
0

We seek solutions of (2.21) such that J > 0 and 0 < X < 1. (Note that
X = u(0) and 0 < u(0) < 1.) In fact, any such a pair (X*, J*) provides
a nonnegative solution of (2.18) via (2.19) and (2.20).

Note that if the following conditions are satisfied, then (2.21) reduces
to a single equation with two unknowns J and X:

(2.31) R=1 and L(J)=C(J)=0 forall J.
Hence in this case (2.21) has continuum of solutions (see [2]). In order

to rule out such a pathological case, the following assumption is required
in the rest of the paper.

(2.32) All the relations in (2.31) do not hold simultaneously.

Also note that if we have an endemic equilibrium (J*, X*) with J* =
0, we can immediately show that X* = 0 and C(-) = D(:) = 0 by (2.18
iii), (2.20), (2.26) and (2.27). Since this situation is rather special, we
also rule out such a case in this paper. Actually we shall assume the
following in the rest of the paper:

(2.33) D(-) is not identically zero.
Note that the above assumption is equivalent to the following:

ay > a,, where
af =Inf{A: h(a) =0 ae. in (4, a)},
a, = Sup{A:g(a) =0a.e. in [0, A]}.

Hence, in biological point of view, assumption (2.33) is not so restrictive.



140 Youngjoon Cha

Under the assumptions (2.32) and (2.33) we can further reduce the
system (2.21) to a single equation. In fact, solving the second equation
for X we obtain
_ JL{J)+ C(J)
1-R+JL(J)+CI)’
which, when substituted into the other equation yields:

(235) (1-R)(J—-JM(J)-D(J))+ (J-G)(JL(J)+C(J)) =
Thus we consider the continuous function
(2.36) ¢(J) = (1 - R) (J —JM(J)— D(J)) + (J — G) (JL(J) + C(J))

and we analyze its behavior in the interval (0,00). The following exis-
tence and uniqueness results are given in [2].

(2.34)

THEOREM 2.1. An endemic state always exists.

THEOREM 2.2. If g = 0, then the endemic state is unique.

Note that the assumption, ¢ = 0, in theorem 2.2 implies that there is
no vertical transmission of the disease.

3. Stability analysis

In this section we shall consider the local stability of the model.
First we take the following new variables, respectively called the age
profiles of infecteds and susceptibles:

_i(a,?)
ua,t) = Poo(a)’
_ s(a,t)
vat)= Poo(@)’
Then (2.15) reduces to the following system:
(%1 2% = k(@) (t)ola, 1) ~ o(a)e(a ),
% T % = k(a)J (t)v(a,t) + g(a)v(a,t) — y(a)u(a,t),
(3.1) v(0,t) = 1—u 0,t),
U(Ot—qo ﬂ )m(a)da,
(CL, O) = Up (a‘)v
L v(a,0) = vg(a)
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with

J(t) = bo /0 " h(oYul(o, tyr(o)do.

Integrating v along the characteristics in (3.1), we get

'U()((Z - t)eﬁ Jlk(o+a—t)J(o)+g(o+a—t)]do for a > t,

(3.2) w(a,t)= {

Y(t — a)e_ f(;l[N(U)J(a‘+t—a)+g(0‘)]d0’ for ¢t Z a,
where
Y (t) = v(0,t).

Using (3.2) and integrating u along the characteristics in (3.1), we have
(3.3)

,
o I v(s+a—t)ds [uo(a —t) +vola — t)

X /Ot[/ﬁ(a+a—t)J(o)+g(0+a—t)]

X ef()a [’y(s+a—t)—I{(s—}-a—t).](s)~—g(0‘+a~t)]d6‘do} for a Z t,

u(a,t) = j
e~ Jo (oo [X(t —a)+Y(t—a)

< | “[6(0) (o +t—a) + 9(0)]

L % efo“h(s)—n(s)J(sH—a)—g(S)]dsda} for t > a,

where

X(t) = u(0,t).

Using this relation, together with

X(t) = g / " Ba)u(a, Hyn(a)da,
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we obtain the following expressions for t > ay:
X0 = [ " B(a)m(@)T(a) [X(t o)+ (1 X(t - a)
(3.4 < [{sl0)1(o + 1= a) + glo)}

x elo [’Y(S)—n(s)J(s-I»t—a)—g(S)]dst] da,

J(t) =bg /OaT h(a)m(a)l'(a) [X(t —a)+(1-X(t—a))
(3.5) y /O (6(0) (0 4+t — a) + g(0)}

% elo [v(s)—K(S)J(s+t—a)—g(s)ldsda} da.

In order to linearize (3.4) and (3.5), we let
(3.6) X(t) = X* + x(t), J(t) =J" + (),
where X* and J* satisfy (2.21), (2.34) and (2.35).

After a long calculation, we get the following expressions:

z(t) = | Qi(a)z(t —a)da+ | Q2(a)j(t —a)da
R Ny Ry

jt)y = /0 Qs(a)z(t — a)da + /0 Q4(a)j(t — a)da,

where the convolution kernels @1, @2, @3 and Q4 are given by
Q1(a) = w(a) [1 —/ N(o,J")E(o, J*)da] ,
0
at
Q2(a) = / w(s)(1 — X*)k(s — a)

x [E(s —a, ) = [ N(o,J)E(o, J*)da] ds,

s—a

Qs(a)

W(a [1— / N(o,J*)E (a,J*)da],
/ B(s)(1 — X*)i(s — a)

X [E(s —a,J") — ) N(o,J*)E(o, J*)daj' ds,

s—a
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with

N(o,J) = J(o) +g(0),

E(a,J) = elo (s)=N(s,J)]ds
w(a) = g B(a)m(a)T(a),
w(a) = by h(a)m(a)T'(a).

Taking Laplace transforms in (3.7), we obtain the following characteris-
tic equation (see [7]):

38 QW =(1-@&W) (1- QM) = QN =0,

where

Qi(x)=/ e MQi(a)da, i=1,2,3,4,
0

represents the Laplace transform of Q;(a).

Our problem is to investigate the stability of steady state solutions
of (3.1) through the analysis of (3.8). We shall use the following general
result (see [7]).

If all the roots of (3.8) have negative real part, then the steady state
corresponding to (X*,J*) is locally asymptotically stable. If there are
roots with positive real part, then it is unstable.

In order to obtain the local stability results, we shall need the follow-
ing assumption (see [4, 8]):

(3.9) w*(ay) < e~ Jo ' Vo)do,

Under the assumption (3.9), we can establish the following three lem-
mas.

LEMMA 3.1. (3.9) is equivalent to each of the following.
at a .
(3.10) / (o) e V6. AN ds g < 1
0
a+ o .
(3.11) / N(o, J*)efo V() =N, Nds g 1.
0

8
(3.12) /0 v(o)ele NI =v()dr gy 1 Vs e [0, a4].
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Proor. Note that u*(a) can be computed as follows.
(3.13)

u*(a) = X*e~ fc;l 7(0)d0+(1_X*)/ N(U, J*)e_. f:'y(s)ds—f; N(S’J*)dsdo'_
0

Hence

u(ar) = e” Jo" to)de

aT o *
X [X* +(1 —X*)/ N(o, J*)elo (&) =N(s,J))ds g5 |
0
Thus (3.9) is equivalent to
aT o *
(3.14) X*+(1-X%) / N(o, J*)elo ) =N(s T Nds gir < 1
0

But
a
/ N(o, J*)ela (&)= )ds g
0

2t o d o *
— JS v(s)ds oS N(s,J%)ds
(3.15) /0 elo o ( elo )do

@ a
_ 1 — et ) =N (s, )ds / ' (0)eds =N (T Nds gy
0

Therefore (3.14) is equivalent to

/aT fy(o‘)efoa(’Y(s)_N(sﬂ]*))dsda' < e,foaT (7(3)—N(57J*))d3.
0

(Note that X* # 1 by (3.14).) This shows that (3.9) is equivalent to
(3.10).

Also note that (3.10) is equivalent to (3.11) by (3.15).

Finally, if we let

8
f(s) = / ry(o’)ef:(N(TvJ*)_’Y(T))deJ,
0

then f(0) = 0 and f(a;) < 1 by (3.10). Moreover, by a simple calcula-
tion, we have

f'(s) =(s) +{N(s,J") = 7(s)} £(s).
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Now, either N(s,J*) —v(s) > 0 and consequently f'(s) > 0, or N(s,J*)
—v(s) < 0 and, in this case, if 0 < f(s) <1,

(3.16) f'(s) 2 v(s) + N(s,J") ~ v(s) = N(s,J") = 0.

Hence, in both cases, f(s) is a non-decreasing function whenever 0 <
f(s) < 1. This is enough to prove (3.12): in fact, f(0) = 0 and f(a;) < 1
so that if f(s) > 1 for some s, then there should be a point sy > s such
that f(sg) <1 but f'(sg) < 0. This contradicts (3.16). O

LEMMA 3.2. Assume (3.9) holds. Then all the functions @Q1(-), Q2(-),
Qs3(+), Q4(-) are nonnegative.

PRrOOF. We shall prove it only for Q:(:) and Q2(:). The proof for
the remaining kernels is very similar. From (3.11),

Q1(a) = w(a) [1 - /Oa N(o,J")E(o, J*)da} > 0.
Concerning Q»(-), it suffices to show that
(3.17) E(s~a,J*) / _ N(o, J*)E(c, J*)do > 0.
But
E(s—a,J") — /: N(o,J*)E(o, J*)do
Zef;"’h(T%N(T,J*‘)]dT _ / " N0, el BN g,
i =N (g ar / : oJo A & e N g,

e do

i) =N (r T dr <1 _ / T el {N(T,J*)~v<r>1drda> 7
and the lemma follows from (3.12). O

LEMMA 3.3. Assume that (3.9) holds. Then Q(0) > 0.
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ProoF. We have
(3.18

)
/Ooo Qi(a) da:/o“’w(a) da—/ooow(a) /OGE(U, J*)N (o, J*) doda
=R-J /O (@ /0 " E(o, J*)x(o) doda

—/aw(a) /a E(o,J")g(0) doda
0 0
=R—J*L(J*) - C(J").

Hence, from lemma 3.2, we get
(3.19) 0< / Or(a)da < R< 1.
0
Similarly we get
o
(3.20) 0< / Qs(a)da =G — J*M(J*) — D(J*) < G.
0

Since we are assuming that D(-) is not zero, we get the following strict
inequality from (3.20):

(3.21) J*M(J*) < G.

Also we have
(3.22)

o]

OS/ Q2(a)da

_ /:OO/aaTw(s)(l ~ X*)x(s — a)

X [E(s—a, JY—[| N(o,J")E(o, J*)da] dsda,

s§—a

—(1-X7) /)WLGTw(s)H(s _ a)E(s —a, J*) ds da

- (1- X*)/OOO/GT w(s)k(s —a) ) N(o,J")E(0,J*)do dsda

S—a
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=(1-X") /OaT w(s) /OS k(s —a)E(s —a,J")dads
— (- X /OaT w(s) /0 k(s — ) / N(o, J*)E(c, J*) do dads
=(1- X")/OaT w(s) /Os k(o)E(o,J*)do ds

—(1- X*)/OaT w(s) /OS k(s —a) /S_ N(o,J*)E(0,J*)do dads
< (1=X*)L(J").
Similarly,
(3.23) 0< /OCQ4(a) da < (1= X" )M(J").
0

Hence, from the relations (3.18) through (3.23), we get the following:

(324
(1—/ Q1(a) da) <1~/ Qala da)
_/ anda/ Qs(a) da

(1 ~ R+ L) + 0 ) (1= (1= X7)M(T))
(I)(G = T M) - D(J")
(1—R+J* (J*)+C(J*))( M(J *))
— L(J)(G — I M(J*) - D(J))
J*(J + J2L(J*) + J*C(J¥)
— J*M(J*) + J*RM(J*) — J*GL(J*)
— RJ* 4+ J*L(J*)D(J*) - J*M(J*)C(J*))
= (807" + D) ~ RD(") + GO(T")
+ J*L(J*)D(J") = " M(J)C(T))

((1 — R)D(J*) + C(J*)(G — J*M(J*)) + J*L(J*)D(J*))

53&‘|P_.
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Note that the last inequality follows from (2.32), (2.33) and (3.21). O

Now we are ready for our main theorem:

THEOREM 3.1. Assume that (3.9) holds. Then any endemic equilib-
rium (X*, J*) is locally asymptotically stable.

Proor. For any A with ® A > 0, (3.19) and lemma 3.3 imply that

Q)
> |1 - QI — Qa( )I—!Qz( )1Qs(V)]
> (1= @D = 1QaN)]) — 1Q2MN)IQs (V)]

(o) e
_ /0 Q2(a)da /0 Qs(a)da
(0)

> 0.

v

Thus there is no root A of the characteristic equation having ® A > 0.0

4, Concluding remarks

We have considered an age-structured epidemic model of S-I-R type
with external force of infection.

We obtained the stability result which says that the endemic states
are locally asymptotically stable for almost all cases. This result is quite
different from that of the usual S-I-R model without external force of
infection. Note that the existence of external force makes the steady
state stable.

We have used (3.9) to get the stability result in our model. In general,
we do not know whether the sufficient condition we use in order to prove
the local asymptotic stability of endemic equilibria is also necessary.

General results concerning stability of endemic equilibria are still
open. As a future work, complete stability analysis might be a rea-
sonable choice.
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