• Title/Summary/Keyword: Structure-spectra correlation

Search Result 42, Processing Time 0.026 seconds

A Study on Turbulent Wall Pressure Fluctuations Using a Coherent Structure Model (응집구조 모델을 이용한 난류 벽면 압력변동에 대한 연구)

  • Ahn, Byoung-Kwon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.5 s.122
    • /
    • pp.405-414
    • /
    • 2007
  • In recent years, experimental and theoretical studies show that turbulent flows looking disordered have a definite structure produced repetitively with visible order. As a core structure of turbulence, hairpin vertices are believed to play a major role in developing and sustaining the turbulence process in the near wall region of turbulent boundary layers and may be regarded as the simplest conceptual model that can account for the essential features of the wall pressure fluctuations. In this work, fully developed typical hairpin vortices are focused and the associated surface pressure distributions and their corresponding spectra are estimated. On the basis of the attached eddy model, the overall surface pressure spectra are represented in terms of the eddy size distribution. The model is validated by comparison of predicted wavenumber spectra with existing empirical models, the results of direct numerical simulation (DNS) and also spatial correlations with experimental measurements.

NEAR-INFRARED STUDIES ON STRUCTURE-PROPERTIES RELATIONSHIP IN HIGH DENSITY AND LOW DENSITY POLYETHYLENE

  • Sato, Harumi;Simoyama, Masahiko;Kamiya, Taeko;Amari, Trou;Sasic, Slobodan;Ninomiya, Toshio;Siesler, Heinz-W.;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1281-1281
    • /
    • 2001
  • Near-infrared (NIR) spectra have bean measured for high-density (HDPE), linear low-density (LLDPE), and low-density (LDPE) polyethylene in pellet or thin films. The obtained spectra have been analyzed by conventional spectroscopic analysis methods and chemometrics. By using the second derivative, principal component analysis (PCA), and two-dimensional (2D) correlation analysis, we could separate many overlapped bands in the NIR. It was found that the intensities of some bands are sensitive to density and crystallinity of PE. This may be the first time that such bands in the NIR region have ever been discussed. Correlations of such marker bands among the NIR spectra have also been investigated. This sort of investigation is very important not only for further understanding of vibration spectra of various of PE but also for quality control of PE by vibrational spectroscopy. Figure 1 (a) and (b) shows a NIR reflectance spectrum of one of the LLDPE samples and that of PE, respectively. Figure 2 shows a PC weight loadings plot of factor 1 for a score plot of PCA for the 16 kinds of LLDPE and PE based upon their 51 NIR spectra in the 1100-1900 nm region. The PC loadings plot separates the bands due to the $CH_3$ groups and those arising form the $CH_2$ groups, allowing one to make band assignments. The 2D correlation analysis is also powerful in band enhancement, and the band assignments based upon PCA are in good agreement with those by the 2D correlation analysis.(Figure omitted). We have made a calibration model, which predicts the density of LLDPE by use of partial least square (PLS) regression. From the loadings plot of regression coefficients for the model , we suggest that the band at 1542, 1728, and 1764 nm very sensitive to the changes in density and crystalinity.

  • PDF

Two-dimensional near-infrared correlation spectroscopy, principal component analysis and water structure

  • Sectnan, Vegard H.;Sasic, Slobodan;Isaksson, Tomas;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1287-1287
    • /
    • 2001
  • The structure of water molecules in the pure liquid state has been subjected to extensive research for several decades. Questions still remain unanswered, however, and no single model has been found capable of explaining all the anomalies of water. In the present study near-infrared spectra of water in the temperature region 6-$80^{\circ}C$ have been analysed by use of principal component analysis (PCA) and two-dimensional correlation spectroscopy in order to study the dynamic behaviour of the water band centred at 1440 nm, which is due to the combination of symmetric and antisymmetric O-H stretching modes. It has been found that the wavelengths 1412 and 1491 nm account for more than 99% of the spectral variation, representing two major water species with weaker and stronger hydrogen bonds, respectively. A third species located at 1438 nm, whose concentration was relatively constant as a function of temperature, is also indicated. A somewhat distorted two-state structural model for water is suggested.

  • PDF

THE COMBINATION OF CHEMOMETRICS AND 2D NIR CORRELATION SPECTROSCOPY IN THE ANALYSIS OF DENATURATION PROCESS

  • Czarnik-Matusewicz, Boguslawa;Murayama, Koichi;Wu, Yuqing;Ozaki, Yukihiro
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1286-1286
    • /
    • 2001
  • Despite extensive theoretical and experimental studies the structure of the protein-solvent interface is subject of many controversy. Understanding the processes that occur in aqueous solution requires understanding of the solvent influence on the structure of protein. The aim of this study is to investigate the applicability of NIR methods in the study of hydration phenomena in protein solutions. Temperature-induced changes in NIR spectra of -lactoglobulin (BLG) in aqueous solutions have been investigated by means of two-dimensional correlation spectroscopy (2DCOS) and principal component analysis (PCA). With the temperature increase the balance of forces between the BLG's interaction with itself and the BLGs interaction with its environment is disrupted leading to BLG unfolding. Significant differences of 2D signals and distinct discrepancies of loading on PC1 and PC2 were observed as a result of temperature increase. In the native folded conformation of BLC, most of the nonpolar amino acids are hidden in the centre of the structure, out of contact with water molecules, while charged groups are outside, in the contact with water. The polar groups promote low density Ih-type structure in the water outside this first hydration shell. When BLG unfolds it assumes a more extended configuration on which the previously buried nonpolar groups are exposed to water and promote the higher density II-type structure outside its first shell. Detailed assignments of bands attributed to the bulk water, different states of the hydrated water and the changed conformation of BLG are proposed.

  • PDF

DYNAMICAL CHARACTERISTICS OF THE QUIET TRANSITION REGION: SPATIAL CORRELATION STUDIES OF H I 931 AND S VI 933 UV LINES

  • YUN HONG SIK;CHAE JONG CHUL;POLAND A. I.
    • Journal of The Korean Astronomical Society
    • /
    • v.31 no.1
    • /
    • pp.1-17
    • /
    • 1998
  • To understand the basic physics underlying large spatial fluctuations of intensity and Doppler shift, we have investigated the dynamical charctersitics of the transition region of the quiet sun by analyzing a raster scan of high resolution UV spectral band containing H Lyman lines and a S VI line. The spectra were taken from a quiet area of $100'\times100'$ located near the disk center by SUMER on board SOHO. The spectral band ranges from 906 A to 950 A with spatial and spectral resolution of 1v and $0.044 {\AA}$, respectively. The parameters of individual spectral lines were determined from a single Gaussian fit to each spectral line. Then, spatial correlation analyses have been made among the line parameters. Important findings emerged from the present analysis are as follows. (1) The integrated intensity maps of the observed area of H I 931 line $(1\times10^4 K)$ and S VI 933 line $(2\times10^5 K)$ look very smilar to each other with the same characterstic size of 5". An important difference, however, is that the intensity ratio of brighter network regions to darker cell regions is much larger in S VI 933 line than that in H I 931 line. (2) Dynamical features represented by Doppler shifts and line widths are smaller than those features seen in intensity maps. The features are found to be changing rapidly with time within a time scale shorter than the integration time, 110 seconds, while the intensity structure remains nearly unchanged during the same time interval. (3) The line intensity of S VI is quite strongly correlated with that of H I lines, but the Doppler shift correlation between the two lines is not as strong as the intensity correlation. The correlation length of the intensity structure is found to be about 5.7' (4100 km), which is at least 3 times larger than that of the velocity structure. These findings support the notion that the basic unit of the transition region of the quiet sun is a loop-like structure with a size of a few $10^3 km$, within which a number of unresolved smaller velocity structures are present.

  • PDF

Estimation of seismic effective energy based parameter

  • Nemutlu, Omer Faruk;Sari, Ali;Balun, Bilal
    • Structural Engineering and Mechanics
    • /
    • v.82 no.6
    • /
    • pp.785-799
    • /
    • 2022
  • The effect of earthquakes in earthquake resistant structure design stages is influenced by the highest ground acceleration value, which is generally a strength-based approach in seismic codes. In this context, an energy-oriented approach can be suggested as an alternative to evaluate structure demands. Contrary to the strength-based approach, the strength and displacement demands of the structure cannot be evaluated separately, but can be evaluated together. In addition, in the energy-oriented approach, not only the maximum effects of earthquakes are taken into account, but also the duration of the earthquake. In this respect, it can be said that the use of energy-oriented earthquake parameters is a more rational approach besides being an alternative. In this study, strength and energy-oriented approaches of earthquake parameters of 11 different periods of single degree of freedom systems were evaluated over 28 different earthquake situations. The energy spectra intended to be an alternative to the traditional acceleration spectra were created using the acceleration parameter equivalent to the input energy. Two new energy parameters, which take into account the effective duration of the earthquake, are proposed, and the relationship between the strength-oriented spectral acceleration parameters and the energy parameters used in the literature is examined by correlation study. According to the results obtained, it has been seen that energy oriented earthquake parameters, which give close values in similar period situations, will be a good alternative to strength oriented earthquake parameters. It was observed that the energy parameters were affected by the effective duration of the earthquake, unlike the strength-based parameters. It has been revealed that the newly proposed energy parameters considering the effective duration give good correlations. Finally, it was concluded that the energy parameters can be used in the design, and the newly proposed effective energy parameters can shorten the analysis durations.

Correlation between optimized thicknesses of capping layer and thin metal electrode for efficient top-emitting blue organic light-emitting diodes

  • Hyunsu Cho;Chul Woong Joo;Byoung-Hwa Kwon;Chan-mo Kang;Sukyung Choi;Jin Wook Sin
    • ETRI Journal
    • /
    • v.45 no.6
    • /
    • pp.1056-1064
    • /
    • 2023
  • The optical properties of the materials composing organic light-emitting diodes (OLEDs) are considered when designing the optical structure of OLEDs. Optical design is related to the optical properties, such as the efficiency, emission spectra, and color coordinates of OLED devices because of the microcavity effect in top-emitting OLEDs. In this study, the properties of top-emitting blue OLEDs were optimized by adjusting the thicknesses of the thin metal layer and capping layer (CPL). Deep blue emission was achieved in an OLED structure with a second cavity length, even when the transmittance of the thin metal layer was high. The thin metal film thickness ranges applicable to OLEDs with a second microcavity structure are wide. Instead, the thickness of the thin metal layer determines the optimized thickness of the CPL for high efficiency. A thinner metal layer means that higher efficiency can be obtained in OLED devices with a second microcavity structure. In addition, OLEDs with a thinner metal layer showed less color change as a function of the viewing angle.

Generation of inflow turbulent boundary layer for LES computation

  • Kondo, K.;Tsuchiya, M.;Mochida, A.;Murakami, S.
    • Wind and Structures
    • /
    • v.5 no.2_3_4
    • /
    • pp.209-226
    • /
    • 2002
  • When predicting unsteady flow and pressure fields around a structure in a turbulent boundary layer by Large Eddy Simulation (LES), velocity fluctuations of turbulence (inflow turbulence), which reproduce statistical characteristics of the turbulent boundary layer, must be given at the inflow boundary. However, research has just started on development of a method for generating inflow turbulence that satisfies the prescribed turbulence statistics, and many issues still remain to be resolved. In our previous study, we proposed a method for generating inflow turbulence and confirmed its applicability by LES of an isotropic turbulence. In this study, the generation method was applied to a turbulent boundary layer developed over a flat plate, and the reproducibility of turbulence statistics predicted by LES computation was examined. Statistical characteristics of a turbulent boundary layer developed over a flat plate were investigated by a wind tunnel test for modeling the cross-spectral density matrix for use as targets of inflow turbulence generation for LES computation. Furthermore, we investigated how the degree of correspondence of the cross-spectral density matrix of the generated inflow turbulence with the target cross-spectral density matrix estimated by the wind tunnel test influenced the LES results for the turbulent boundary layer. The results of this study confirmed that the reproduction of cross-spectra of the normal components of the inflow turbulence generation is very important in reproducing power spectra, spatial correlation and turbulence statistics of wind velocity in LES.

Diagnostics of Diffuse Two-Phase Matter Using Techniques of Positron Annihilation Spectroscopy in Gamma-Ray and Optical Spectra

  • Doikov, Dmytry;Yushchenko, Alexander;Jeong, Yeuncheol
    • Journal of Astronomy and Space Sciences
    • /
    • v.36 no.3
    • /
    • pp.115-119
    • /
    • 2019
  • This paper is a part of the series on positron annihilation spectroscopy of two-phase diffuse gas-and-dust aggregates, such as interstellar medium and the young remnants of type II supernovae. The results obtained from prior studies were applied here to detect the relationship between the processes of the annihilation of the K-shell electrons and incident positrons, and the effects of these processes on the optical spectra of their respective atoms. Particular attention was paid to the Doppler broadening of their optical lines. The relationship between the atomic mass of the elements and the Doppler broadening, ${\Delta}{\lambda}_D$ (${\AA}$), of their emission lines as produced in these processes was established. This relationship is also illustrated for isotope sets of light elements, namely $^3_2He$, $^6_3Li$, $^7_3Be$, $^{10}_5B$ and $^{11}_5B$. A direct correlation between the ${\gamma}-line$ luminosity ( $E_{\gamma}=1.022MeV$) and ${\Delta}{\lambda}_D$ (${\AA}$) was proved virtually. Qualitative estimates of the structure of such lines depending on the positron velocity distribution function, f(E), were made. The results are presented in tabular form and can be used to set up the objectives of further studies on active galactic nuclei and young remnants of type II supernovae.

Spatial flow structure around a smooth circular cylinder in the critical Reynolds number regime under cross-flow condition

  • Raeesi, Arash;Cheng, Shaohong;Ting, David S.K.
    • Wind and Structures
    • /
    • v.11 no.3
    • /
    • pp.221-240
    • /
    • 2008
  • The spanwise flow structure around a rigid smooth circular cylinder model in cross-flow has been investigated based on the experimental data obtained from a series of wind tunnel tests. Surface pressures were collected at five spanwise locations along the cylinder over a Reynolds number range of $1.14{\times}15^5$ to $5.85{\times}10^5$, which covered sub-critical, single-bubble and two-bubble regimes in the critical range. Separation angles were deduced from curve fitted to the surface pressure data. In addition, spanwise correlations and power spectra analyses were employed to study the spatial structure of flow. Results at different spanwise locations show that the transition into single-bubble and two-bubble regimes could occur at marginally different Reynolds numbers which expresses the presence of overlap regions in between the single-bubble regime and its former and later regimes. This indicates the existence of three-dimensional flow around the circular cylinder in cross-flow, which is also supported by the observed cell-like surface pressure patterns. Relatively strong spanwise correlation of the flow characteristics is observed before each transition within the critical regime, or formation of first and second separation-bubbles. It is also noted that these organized flow structures might lead to greater overall aerodynamic forces on a circular cylinder in cross-flow within the critical Reynolds number regime.