• Title/Summary/Keyword: Structure-function analysis

Search Result 2,100, Processing Time 0.034 seconds

Transfer Path Analysis of the Vehicle Interior Noise according to Excitation Existence or not (차량 가진원 유무에 따른 실내소음의 전달경로 분석에 대한 연구)

  • Park, Jong-Ho;Lee, Sang-Kwon
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.04a
    • /
    • pp.365-370
    • /
    • 2011
  • Structure-bone noise is an important aspect to consider during the design and development of a vehicle. Reduction of structure-bone noise of the compartment in a vehicle is an important task in automotive engineering. Many methods which analyze transfer path of noise have been used for structure-bone noise. The existing method to measure of frequency response function of transfer path has been tested by removing a source. This Paper presents an experimental analysis about Transfer Path Analysis of the vehicle interior noise according to Excitation or not. To identify these points of difference, experiment were conducted through an experimental test using simulation vehicle.

  • PDF

Noise-source Analysis of Tactical Vehicle Using Partial Coherence Function (부분기여도함수를 이용한 전술차량 소음원 분석)

  • Park, Sungho;Lee, Kyunghyun;Han, HyungSuk;Jeon, Soohong
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.26 no.7
    • /
    • pp.774-780
    • /
    • 2016
  • In this paper noise source and transfer path of tactical vehicle are analyzed with partial coherence function and spectrum analysis. Engine, transmission, structure panel and aerodynamic are main source of cabin noise. To reduce cabin noise, identifying transfer path of sources and analyzing their contribution is important. With modeling of transfer path and partial coherence function, transfer path and principal noise source can be identified. Engine/transmission and structural resonance are principal source of low frequency noise and by adding stiffener and sound absorbing material, resonance of vibration and inflow air problem can be solved.

Vibration Analysis of Structure with Nonlinear Joint Using Describing Function (기술함수를 이용한 비선형 결합부를 가진 구조물의 진동해석)

  • 박해성;지태한;박영필
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.2
    • /
    • pp.372-379
    • /
    • 1994
  • In this study, the describing function is adopted to represent nonlinearity in the system equations. The compliance can be obtained by solving nonlinear simultaneous algebraic quations for multi-degrees-of-freedom system with multinonlinearities. When the technique is applied, the nonlinearity of the system can be identified from the compliance which is obtained from the sinusoidal excitation of the system. By employing the describing function in the Building Block Analysis, we can extensively develop the BBA into investigation of the continuous systems with nonlinearities. The evaluated compliance can quantitatively show the effects of nonlinearity such as the transfer of the natural frequency, the variance of the compliance at the natural frequency, and the jump phenomena which occur during sweeping of the excitation frequency.

Synthesis, Crystal Structure and Density Functional Calculations on 1-Phenyl-3-p-fluorophenyl-5-p-chlorophenyl-2-pyrazoline

  • Zhao, Pu Su;Li, Yu Feng;Guo, Huan Mei;Jian, Fang Fang;Wang, Xian
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.9
    • /
    • pp.1539-1544
    • /
    • 2007
  • 1-Phenyl-3-p-fluorophenyl-5-p-chlorophenyl-2-pyrazoline has been synthesized and characterized by elemental analysis, IR, UV-Vis and X-ray single crystal diffraction. Density functional calculations show that B3LYP/6-311G** method can reproduce the structural parameters. The electronic absorption spectra have been predicted based on the optimized structure by using 6-311G** and 6-311++G** basis sets and compared with the experimental values. The results indicate that TD-DFT method can only predict the electronic absorption spectra of the system studied here approximately. On the basis of vibrational analyses, the thermodynamic properties of the title compound at different temperatures have been calculated, revealing the correlations between ,C0p,m,S0m,H0m and temperature.

The Prediction of Dynamic Fatigue Life of Multi-axial Loaded Structure (다축 하중 구조물의 동적 피로수명 예측)

  • Yoon, Moon Young;Kim, Kyeung Ho;Park, Jang Soo;Boo, Kwang Seok;Kim, Heung Seob
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.30 no.2
    • /
    • pp.231-235
    • /
    • 2013
  • The purpose of this paper is to compare with estimation of equivalent fatigue load in time domain and frequency domain and estimate the fatigue life of structure with multi-axial vibration loading. The fatigue analysis with two methods is implemented with various signals like random, sinusoidal signals. Also an equivalent fatigue life estimated by rainflow cycle counting in time domain is compared with results estimated with probability density function of each signal in frequency domain. In case of frequency domain, equivalent fatigue life can estimate through Dirlik's method with probability density function. And the work proposed in this paper compared the fatigue damage accumulated under uni-axial loading to that induced by multi-axial loading. The comparison is preformed for a simple cantilever beam, which is exposed to vibrations of several directions. For verification of estimation performance of fatigue life, results are compared to those of FEM analysis (ANSYS).

Automated structural modal analysis method using long short-term memory network

  • Jaehyung Park;Jongwon Jung;Seunghee Park;Hyungchul Yoon
    • Smart Structures and Systems
    • /
    • v.31 no.1
    • /
    • pp.45-56
    • /
    • 2023
  • Vibration-based structural health monitoring is used to ensure the safety of structures by installing sensors in structures. The peak picking method, one of the applications of vibration-based structural health monitoring, is a method that analyze the dynamic characteristics of a structure using the peaks of the frequency response function. However, the results may vary depending on the person predicting the peak point; further, the method does not predict the exact peak point in the presence of noise. To overcome the limitations of the existing peak picking methods, this study proposes a new method to automate the modal analysis process by utilizing long short-term memory, a type of recurrent neural network. The method proposed in this study uses the time series data of the frequency response function directly as the input of the LSTM network. In addition, the proposed method improved the accuracy by using the phase as well as amplitude information of the frequency response function. Simulation experiments and lab-scale model experiments are performed to verify the performance of the LSTM network developed in this study. The result reported a modal assurance criterion of 0.8107, and it is expected that the dynamic characteristics of a civil structure can be predicted with high accuracy using data without experts.

Optimal Design of Radial Basis Function Network Using Time-Frequency Localization (시간-주파수 지역화를 이용한 방사 기준 함수 구조의 최적 설계)

  • Kim, Yong-Taek;Kim, Seong-Joo;Seo, Jae-Yong;Jeon, Hong-Tae
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.5
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, we propose the initial optimized structure of the Radial Basis Function Network(RBFN) which is more simple in the part of the structure and converges more faster than Neural Network. For this, we use the analysis method using time frequency localization and we can decide the initial structure of the RBFN suitable for the given problem. When we compose the hidden nodes with the radial basis functions whose localization are similar with the target function in the plane of the time and frequency, we can make a good decision of the initial structure having an ability of approximation.

  • PDF

Coverage Dependent Adsorption Configuration of Phenylalanine on Ge(100)

  • Yang, Se-Na;Yun, Yeong-Sang;Kim, Ye-Won;Hwang, Han-Na;Hwang, Chan-Guk;Kim, Gi-Jeong;Kim, Se-Hun;Lee, Han-Gil
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2010.08a
    • /
    • pp.78-78
    • /
    • 2010
  • The Adsorption structures of phenylalanine on Ge(100) surface have been investigated as a function of coverage using high-resolution photoemission spectroscopy (HRPES) and density functional (DFT) calculation. To converge these experimental and theoretical conclusion, we systematically performed HRCLPES measurements and DFT calculation for various coverage in the adsorption structures of phenylalanine molecules on the Ge(100) surface. In this study, we found two different adsorption structure as a function of coverage in phenylalanine on Ge(100), monitoring three core level spectra (Ge 3d, C 1s, N 1s, and O 1s) using HRPES Through analysis of the binding energies, we confirmed that O-H dissociated and N dative-bonded structure emerges at low coverage (0.10 ML), which is the same to the result of glycine and alanine on Ge(100) system, whereas O-H dissociation structure also appears at higher coverage. Moreover, we observed the shape of phenyl group being included in phenylalanine is changed from flat to tilting structure at final state using DFT calculation. Through the spectral analysis for phenylalanine, we will demonstrate variation of coverage dependent structural change for phenylalanine on Ge(100) surface using experimental (HRPES) and theoretical studies (DFT calculation).

  • PDF

Multiple input describing function analysis of non-classical aileron buzz

  • Zafar, Muhammad I.;Fusi, Francesca;Quaranta, Giuseppe
    • Advances in aircraft and spacecraft science
    • /
    • v.4 no.2
    • /
    • pp.203-218
    • /
    • 2017
  • This paper focuses on the computational study of nonlinear effects of unsteady aerodynamics for non-classical aileron buzz. It aims at a comprehensive investigation of the aileron buzz phenomenon under varying flow parameters using the describing function technique with multiple inputs. The limit cycle oscillatory behavior of an asymmetrical airfoil is studied initially using a CFD-based numerical model and direct time marching. Sharp increases in limit cycle amplitude for varying Mach numbers and angles of attack are investigated. An aerodynamic describing function is developed in order to estimate the variation of limit cycle amplitude and frequency with Mach number and angle of attack directly, without time marching. The describing function results are compared to the amplitudes and frequencies predicted by the CFD calculations for validation purposes. Furthermore, a limited sensitivity analysis is presented to demonstrate the potential of the approach for aeroelastic design.

Structure and Management Plan of the Spontaneous Herbaceous Communities in Midongsan Arboretum, Chungcheongbuk-do (충청북도 미동산수목원의 자생 초본군락 구조 및 관리방안)

  • You Ju-Han;Jung Sung-Gwan
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.33 no.2 s.109
    • /
    • pp.48-59
    • /
    • 2005
  • The purpose of this study was to examine the ecological characteristics of herbaceous communities by systematic and scientific analysis of their structure and diversity in the Midongsan Arboretum and to offer raw data for a long-tenn monitoring study. The importance value and diversity index of species appearing in twenty plots from July to September, 2004 were analyzed and a management plan for these communities is presented. Vascular plants were represented by 60 taxa of 23 families, 51 genera, 50 species and 10 varieties. Based on the results of importance value analysis, the most dominant species was Artemisia princeps var. orientalis, followed by Setaria viridis and Erigeron canadensis. The diversity index analysis showed that plot no. 5 had the highest H' and H'_{max}$(2.0135 and 2.6391). It's species composition was comparatively more diverse and it's structure more stable than other plots. Artemisia montana and Dactylis glomerata showed the highest correlation between species. Because herbaceous communities are important biological habitats and provide important function in environmental conservation, it is important to properly preserve these communities. At the same time, in order to preserve genetic resources and improve spatial function, it may be necessary to consider removing herbaceous communities in certain areas. In the future, the relations between physicochemical soil properties and herbaceous communities should be examined and community movement should be studied.