• Title/Summary/Keyword: Structure-borne sound

Search Result 95, Processing Time 0.026 seconds

A Study on Noise Identification of Indoor Air-conditioner Using Experimental Methods (실험적 방법을 통한 에어컨 실내기의 소음원 검출에 관한 연구)

  • 이성진;오재응;이정윤;강태호
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.87-87
    • /
    • 2004
  • An air-conditioner has various noise sources such as a fan noise, a motor noise, and a vibration induced noise. To reduce these noise effectively, noise sources must be identified. Especially in this paper, the structure borne sound radiated from the motor bracket of the indoor air-conditioner is considered. To do this, the operational deflection shape, which is used for understanding of the behavior of the motor bracket at a particular frequency, is obtained and compared with the sound intensity, which is used for the noise identification. Through this study, the noise sources of indoor air-conditioner are defined and the effective noise reduction method is proposed.

  • PDF

The Effect of Air gap Insertion in Test Acoustic Performance of Sound Barrier using Structural Vibration System (구조 진동 시스템을 이용한 흡차음재 음향 성능 실험시 공기 층 삽입의 효과)

  • Sihn, Jae-Seong;Kang, Yeon-June;Sung, Myung-Ho;Kim, Hyun-Suk
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.646-650
    • /
    • 2001
  • In this paper, it is presented that the effect of air gap insertion in testing the transmission loss of sound barrier using structural vibration system. In this study, we use the APAMAT based on the structure-borne-noise. The measured results show that air gap insertion improves transmission loss as results of test based on the air-borne-noise. The measured results are compared with the predicted transmission loss using the transfer matrix method. The predicted results were found to be in reasonable agreement with measured results.

  • PDF

Measurements of the floor impact sound level for floating screeds in apartment house (共同住宅 뜬바닥構造의 바닥 衝擊音레벨 測定)

  • Park, Byeong-Jeon;Shin, Young-Moo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.11 no.2
    • /
    • pp.38-49
    • /
    • 1992
  • The structure borne sound is one of the most important factor in building acoustics. Nevertheless, there is not yet sufficient knowledge to predict its behavior in preparing the acoustical design of a building. We are concerned with the concrete floating floor construction, which is one of the most promising ways to control floor impact sound. This study is to develop floating screeds isolated from the conventional concrete floor structures, to improve the concrete floor systems for the purpose of the good sound insulation performance which protects the propagation of the structure borne sound. Floor impact sound in many apartment house buildings and developed floating floors was measured, and we can save many floor impact sound data.

  • PDF

Prediction of Isolation Performance of Multi-Layered Sound Barrier System Using the Sound Pressure Radiated by Point Impact (점가진력에 의해 방사된 읍압을 이용한 다중 적층 흡차음 시스템의 차음 성능 예측)

  • 김정수;신재성;강연준
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.1081-1085
    • /
    • 2002
  • A modeling is developed to predict the isolation performance of sound barrier systems under the sound pressure radiated from excited by point impact. The predicted results are compared with the measured results obtained by using APAMAT II. This instrument provides a combination of structure-borne noise and air-borne noise, which corresponds to rolling noise, by applying the excitation system projected steel balls against the steel sheet.

  • PDF

Prediction of Structure-Borne Noise for Floating Floor Using SEA (SEA 기법을 이용한 부유상구조의 구조기인 소음 예측)

  • Park, Hee-Jun;Woo, Kwan-Je
    • Proceedings of the KSR Conference
    • /
    • 2007.11a
    • /
    • pp.258-264
    • /
    • 2007
  • Floating floors, which are mainly used for reducing interior noise levels of railway vehicle, are known to be superior to single structure in respect to sound transmission loss and vibration reduction performances. The stiffness of isolator is one of the important design variables in floating floors. From modal tests, modal properties of underframe, top floor and isolators are derived. They are used as input parameters for predicting structure-borne noise using AUTOSEA.

  • PDF

The Power of "Mass Law"

  • 김정태;김정수;김운경;김석현
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.710-714
    • /
    • 2002
  • Whenever a noise problem of a product is concerned, a first step is to identify the energy transmission path whether it is an air-borne or a structure-borne. Depending on the characteristic of the noise path, tools on the noise reduction are different. In this paper. an important aspect of the “mass law” in a noise transmission has been investigated. Since an air-borne has 20 dB/Decade, and a structure-borne 10 dB/Decade of a sound transmission loss due to a mass, an engineer who aims to have a light product design should have an enough knowledge on the mass law, especially, the sensitivity of the weight itself. A honeycomb plate is examined as a sample of a light structure to implement a mass law.

  • PDF

Transfer Function of Structure-borne Noise to Underwater Radiated Noise (고체음의 수중방사소음 전달함수)

  • 김재승;김현실;김상렬
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2001.05a
    • /
    • pp.138-142
    • /
    • 2001
  • A comparison between theoretical and measured transfer function, which relates structure-borne noise source level to underwater radiated noise, of a naval ship is presented in this study. Transfer functions are obtained by dividing far field underwater noise by the value of structure borne noise source levels below machinery mounts. In prediction, statistical energy analysis of the whole ship structure is used to get vibration levels of wetted hull plates below water line. Then, far field radiated noise is calculated by summing up contributions from each plates using vibration levels and radiation efficiencies. And 1/3-octave band underwater sound pressure at the distance of 1 m away from the hull were measured to get experimental transfer functions. The two transfer functions are compared to show resonable agreements in spite of the subtle physical differences between each other.

  • PDF