• Title/Summary/Keyword: Structure-based design

Search Result 6,443, Processing Time 0.043 seconds

Durability Evaluation Method of Handling Structure using Hand Calculation and Simulation (수계산과 해석을 이용한 핸드링구 내구성 평가 방법 고찰)

  • Cho, Sung-Min;Bang, Hyo-Jung;Kang, Byung-Ik
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.4
    • /
    • pp.1-9
    • /
    • 2019
  • Most product structural components are assembled by various members and castings except casting products. In such cases, a particular structure is required to move and fix each component. In particular, the safety uncertainty of heavy product assemblies can be linked to large accidents. Thus, the safety design and evaluation of additional structures have become more important. In the field and factories, these additional structures are called handling structures, which are designed and manufactured. As the types of products produced become more diverse, the design and manufacture of a handling structure are also diversified. The results of each evaluation should be derived. We develop a logical design and evaluation method, which was previously designed based on empirical data, for the handling structure.

Parameter Study for Optimal Design of Smart TMD (스마트 TMD의 최적설계를 위한 파라메터 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.17 no.4
    • /
    • pp.123-132
    • /
    • 2017
  • A smart tuned mass damper (TMD) was developed to provide better control performance than a passive TMD for reduction of earthquake induced-responses. Because a passive TMD was developed decades ago, optimal design methods for structural parameters of a TMD, such as damping constant and stiffness, have been developed already. However, studies of optimal design method for structural parameters of a smart TMD were little performed to date. Therefore, parameter studies of structural properties of a smart TMD were conducted in this paper to develop optimal design method of a smart TMD under seismic excitation. A retractable-roof spatial structure was used as an example structure. Because dynamic characteristics of a retractable-roof spatial structure is changed based on opened or closed roof condition, control performance of smart TMD under off-tuning was investigated. Because mass ratio of TMD and smart TMD mainly affect control performance, variation of control performance due to mass ratio was investigated. Parameter studies of structural properties of a smart TMD was performed to find optimal damping constant and stiffness and it was compared with the results of optimal passive TMD design method. The design process developed in this study is expected to be used for preliminary design of a smart TMD for a retractable-roof spatial structure.

Sensitivity and Reliability Analysis of Elate (판 구조물의 감도해석 및 신뢰성해석)

  • 김지호;양영순
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1991.10a
    • /
    • pp.57-62
    • /
    • 1991
  • For the purpose of developing the method for efficiently calculating the design sensitivity and the reliability for the complicated structure such as ship structure, the probabilistic finite element method is introduced to formulate the deterministic design sensitivity analysis method and incorporated with the second moment reliability methods such as MVFOSM, AFOSM and SORM. Also, the probabilistic design sensitivity analysis needed in the reliability-based design is performed. The reliability analysis is carried out for the initial yielding failure, in which the derivative derived in the deterministic desin sensitivity is used. The present PFEM-based reliability method shows good agreement with Monte Carlo method in terms with the variance of response and the associated probability of failure even at the first or first few iteration steps. The probabilistic design sensitivity analysis evaluates explicitly the contribution of each random variable to probability of failure. Further, the reliability index variation can be easily predicted by the variation of the mean and the variance of the random variables.

  • PDF

A Study on Tool Design of Deep Drawing Using Personal Computer (PC에 의한 디이프 드로잉 금형설계의 자동화에 관한 연구)

  • Choi, Jae-Chan;Kim, Byung-Min;Huh, Man-Jo;Kim, Seong-Weon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.7 no.3
    • /
    • pp.56-65
    • /
    • 1990
  • This paper describes a computer aided tool design system of deep drawing of cylindrical cups with or without flange by press. An approach to system is based on knowledge based system. The computer program has written in basic language with personal computer Knowledges for tool design are formulated from the plasticity theory, handbooks, experimental results and empirical knowhow of the field experts. The capabilities of developed system include 1) the selection of tool structure (with or without blank holder, single or double action, lift up or draw off type), 2) the design of tool elements(punch/holder, die/holder etc.) for the previous selected tool structure by the process planning output and the production quantity. The final output is generated in graphics form for design sheet.

  • PDF

Factory simulation based on shipbuilding CIM

  • Nomoto, Toshiharu
    • Proceedings of the KWS Conference
    • /
    • 1998.10a
    • /
    • pp.3-8
    • /
    • 1998
  • This paper considers factory simulation based on shipbuilding CIM in which a computer integrated design and manufacturing system is considered. The author proposes the product model and several alterative functions for designing ship's structure, and develop a ship definition system for computer integrated design and manufacturing. This implemented system is called SODAS (System Of Design and Assembly for Shipbuilding). Object oriented concept is used to develop this system. As well as the product model, the design function cutting function, and virtual assembling function are introduced. By using the design function, any type of ship's structure can be designed. And also factory simulation can be carried out by using the cutting function and virtual assembling function.

  • PDF

A method of optimum design based on reliability for antenna structures

  • Chen, Jianjun;Wang, Fanglin;Sun, Huaian;Zhang, Chijiang
    • Structural Engineering and Mechanics
    • /
    • v.8 no.4
    • /
    • pp.401-410
    • /
    • 1999
  • A method of optimum design based on reliability for antenna structures is presented in this paper. By constructing the equivalent event, the formula is derived for calculating the reliability of reflector accuracy of antenna under the action of random wind load. The optimal model is developed, in which the cross sectional areas of member are treated as design variables, the structure weight as objective function, the reliability of reflector accuracy and the strength or stability of structural elements as constraints. The improved accelerated convergence gradient algorithm developed by the author is used. The design results show that the method in this paper is feasible and effective.

Seismic Design of Structures with Knee Braces (knee brace가 설치된 구조물의 내진설계)

  • 김진구;서영일
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.09a
    • /
    • pp.274-281
    • /
    • 2002
  • In this study a analytical model for a structure with buckling-restrained unbonded knee-braces is proposed, and a performance-based seismic design procedure for such a system Is provided. The proposed structure system has advantage of simplifying the structural design procedure in that the hinge-connected main structural members, such as beams and columns, are designed only for gravity loads, and all the lateral seismic load is resisted by the braces. The design procedure is based on the concept of equivalent damping, and is implemented to the capacity spectrum method. Parametric study is performed with design variables such as yield stress and cross-sectional area of knee-braces to find out proper slope of the braces.

  • PDF

Genetic Algorithm Applied to Optimal Design of a Truss Structure (유전자 알고리즘을 이용한 트러스의 최적단면설계)

  • 허현행;박창훈;윤종열
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.155-162
    • /
    • 1997
  • Genetic algorithms(GA) are based on the principles of natural genetics and natural selection. The algorithm searches an optimum design point using information based on the fitness function evaluated for the population of many design points. An application of GA on optimal design of a truss structure is studied. The terminology and the operating procedures common in GA are formalized by establishing similarities between GA and genetics from biology. In using GA, (1) coding of the design variables, (2) formulation of the fitness function, (3) setting of the termination condition, and (4) establishment of the probabilities are essential. These four points are discussed in the paper.

  • PDF

Design of Anchorage Zone in Prestressed Concrete Structure Using Nonlinear Strut and Tie Model (비선형 스트럿-타이 모델에 의한 PC 구조물의 정착부 설계)

  • 배한옥;변근주;송하원
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.392-397
    • /
    • 1997
  • In this paper, design and analysis of anchorage zone in prestressed concrete structure using nonlinear strut and tie model is presented. Nonlinear strut and tie model is an analysis and design model which constructs strut and tie model based on nonlinear analysis considering the nonlinear behavior of concrete. Based on the nonlinear strut and tie model, the analysis and design are performed for the anchorage zone having singular concentric tendons, singular eccentric tendons and multiple tendons, respectively. For verification of the model, comparisons are made with experimental results as well as results by linear strut and tie models. from the comparisons, it is shown that the design of the anchorage zone by the nonlinear model is still economical without loosing the degree of safety and the prediction of the ultimate load by the nonlinear model gives better accuracy than by the linear one.

  • PDF

An improvement to seismic design of substation support structures

  • Mohammadi, Reza Karami;Akrami, Vahid;Nikfar, Farzad
    • Structural Engineering and Mechanics
    • /
    • v.45 no.6
    • /
    • pp.821-835
    • /
    • 2013
  • The acceleration that the electrical equipment experiences on a structure can be several times the ground acceleration. Currently, substation support structures are being designed according to ASCE (Substation Structure Design Guide 2008), without any consideration about effects of these structures on dynamic behavior of mounted equipment. In this paper, a parametric study is implemented in order to improve seismic design of candlestick substation structures based on this design guide. To do this, dynamic amplification factor (DAF) of different candlestick support-equipment combinations is evaluated and compared to the target DAF presented in IEEE STD 693 (2006). Based on this procedure, a new criterion is developed to restrict maximum acceleration at support-equipment intersection.