Kim, Bee-Chul;Oh, Se-Man;Yoo, Hyeon-Joong;Jang, Young-Beom
Proceedings of the IEEK Conference
/
2007.07a
/
pp.263-264
/
2007
In this paper, an efficient SAD(Sum of Absolute Differences) processor structure for motion estimation of 0.264 is proposed. SAD processors are commonly used both in full search methods for motion estimation or in fast search methods for motion estimation. Proposed structure consists of SAD calculator block, combinator block, and minimum value calculator block. Especially, proposed structure is simplified by using Distributed Arithmetic for addition operation. The Verilog-HDL(Hard Description Language) coding and FPGA implementation results for the proposed structure show 39% and 32% gate count reduction comparison with those of the conventional structure, respectively. Due to its efficient processing scheme, the proposed SAD processor structure can be widely used in size dominant H.264 chip.
Journal of the Korean Institute of Oriental Medical Informatics
/
v.15
no.1
/
pp.1-10
/
2009
In these days everyone search the information easily with the Internet as the rapid distribution and active usage of the Internet. The search engines were developed specially to accuracy of information retrieval. User search the information more quickly and variously with them. The search portal system will be embossed with representation and basic services. The Internet user needs the result of text, image and video, knowledge search. The keyword based search is used generally for getting result of the information retrieval and another method is category based search. This paper investigates the classification of knowledge search structure for oriental medicine in market leader of search portal system by ranking web site. As a result, each classification system is unified and there is a possibility of getting up a many confusion to the user who approaches with classification systematic search method. This treatise proposed the improved oriental medicine classification system of internet information retrieval in knowledge search area. if the service provider amends about the classification system, there will be able to guarantee the compatibility of data. Also the proper access path of the knowledge which seeks is secured to user.
In this paper, we propose the index structure based on a vector approximation for efficiently supporting the similarity search of multi-dimensional data. The proposed index structure splits a region with the space partition method and allocates to the split region dynamic bits according to the distribution of data. Therefore, the index structure splits a region to the unoverlapped regions and can reduce the depth of the tree by storing the much region information of child nodes in a internal node. Our index structure represents the child node more exactly and provide the efficient search by representing the region information of the child node relatively using the region information of the parent node. We show that our proposed index structure is better than the existing index structure in various experiments. Experimental results show that our proposed index structure achieves about $40\%$ performance improvements on search performance over the existing method.
There are generally three folds when developing neural network classifiers. They are as follows: 1) discriminant function; 2) lots of parameters in the design of classifier; and 3) high dimensional training data. Along with this viewpoint, we propose space search optimized polynomial neural network classifier (PNNC) with the aid of data preprocessing technique and simultaneous tuning strategy, which is a balance optimization strategy used in the design of PNNC when running space search optimization. Unlike the conventional probabilistic neural network classifier, the proposed neural network classifier adopts two type of polynomials for developing discriminant functions. The overall optimization of PNNC is realized with the aid of so-called structure optimization and parameter optimization with the use of simultaneous tuning strategy. Space search optimization algorithm is considered as a optimize vehicle to help the implement both structure and parameter optimization in the construction of PNNC. Furthermore, principal component analysis and linear discriminate analysis are selected as the data preprocessing techniques for PNNC. Experimental results show that the proposed neural network classifier obtains better performance in comparison with some other well-known classifiers in terms of accuracy classification rate.
Journal of the Korean Society for Library and Information Science
/
v.44
no.2
/
pp.241-262
/
2010
This study aims to perform an evaluation of classification systems provided by major Korean search portals, Naver, Nate, Daum, and Yahoo-Korea. These classification systems are evaluated in terms of the consistency of classification system, logicality of classification system, ease of interface, clarity of category names, order of category and site listing, and hierarchical structure. The results of this study show that each search portal provides separate classification systems for their services. These results imply that it is crucial for search portals to implement a common classification system and a common interface for their services. This study could contribute to the development and improvement of portals' classification systems.
In this study, damage detection method using harmony search method and frequency response is proposed. In order to verify this method, the following approaches are implemented. Firstly, damage detection method using harmony search was developed. To detect damage, objective functions that minimize difference with natural frequency and modal strain energy from undamaged and damaged model are used. Secondly, efficiency of developed damage detection method was verified by damage detection of beam structure. And results of harmony search and micro genetic algorithm are compared and evaluated. Thirdly, numerical model was implemented for harbor caisson structure and damage scenario was determined. Lastly, damage detection was performed by proposed method and utility of proposed method is verified.
The conventional polynomial neural network (PNN) is a classical flexible neural structure and self-organizing network, however it is not free from the limitation of overfitting problem. In this study, we propose a space search-optimized polynomial neural network (ssPNN) structure to alleviate this problem. Ranking selection is realized by means of ranking selection-based performance index (RS_PI) which is combined with conventional performance index (PI) and coefficients based performance index (CPI) (viz. the sum of squared coefficient). Unlike the conventional PNN, L2-norm regularization method for estimating the polynomial coefficients is also used when designing the ssPNN. Furthermore, space search optimization (SSO) is exploited here to optimize the parameters of ssPNN (viz. the number of input variables, which variables will be selected as input variables, and the type of polynomial). Experimental results show that the proposed ranking selection-based polynomial neural network gives rise to better performance in comparison with the neuron fuzzy models reported in the literatures.
The Transactions of The Korean Institute of Electrical Engineers
/
v.67
no.2
/
pp.285-292
/
2018
In this paper, we propose a distributed search of a cluster robot using tree structure in an unknown environment. In the proposed method, the cluster robot divides the unknown environment into 4 regions by using the LRF (Laser Range Finder) sensor information and divides the maximum detection distance into 4 regions, and detects feature points of the obstacle. Also, we define the detected feature points as Voronoi Generators of the Voronoi Diagram and apply the Voronoi diagram. The Voronoi Space, the Voronoi Partition, and the Voronoi Vertex, components of Voronoi, are created. The generated Voronoi partition is the path of the robot. Voronoi vertices are defined as each node and consist of the proposed tree structure. The root of the tree is the starting point, and the node with the least significant bit and no children is the target point. Finally, we demonstrate the superiority of the proposed method through several simulations.
This paper considers the use of the Partial Transmit Sequence (PTS) technique to reduce the Peak-to-Average Power Ratio (PAPR) of an Orthogonal Frequency Division Multiplexing signal in wireless communication systems. Search complexity is very high in the traditional PTS scheme because it involves an extensive random search over all combinations of allowed phase vectors, and it increases exponentially with the number of phase vectors. In this paper, a suboptimal metaheuristic algorithm for phase optimization based on an improved harmony search (IHS) is applied to explore the optimal combination of phase vectors that provides improved performance compared with existing evolutionary algorithms such as the harmony search algorithm and firefly algorithm. IHS enhances the accuracy and convergence rate of the conventional algorithms with very few parameters to adjust. Simulation results show that an improved harmony search-based PTS algorithm can achieve a significant reduction in PAPR using a simple network structure compared with conventional algorithms.
Journal of the Korean Institute of Intelligent Systems
/
v.18
no.4
/
pp.572-578
/
2008
We analyze the search space considered by the previously proposed R-CORE method for learning Bayesian network structures of large scale. Experimental analysis on the search space of the method is also shown. The R-CORE method reduces the search space considered for Bayesian network structures by recursively clustering the random variables and restricting the orders between clusters. We show the R-CORE method has a similar search space with the previous method in the worst case but has a much less search space in the average case. By considering much less search space in the average case, the R-CORE method shows less tendency of overfitting in learning Bayesian network structures compared to the previous method.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.