• Title/Summary/Keyword: Structure safety

Search Result 4,468, Processing Time 0.031 seconds

Seismic Performance and Damage Prediction of Existing Fire-protection Pipe Systems Installed in RC Frame Structures (철근콘크리트 구조물 내 부착된 수계 관망시스템의 내진거동 및 손상예측)

  • Jung, Woo-Young;Ju, Bu-Seog
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.15 no.3
    • /
    • pp.37-43
    • /
    • 2011
  • Reliability of piping systems is essential to the safety of any important industrial facilities. During an earthquake, damage to the piping system can occur. It can also cause considerable economic losses and the loss of life following earthquakes. Traditionally, the study of the secondary system was less important than primary structure system, however it has recently been emerging as a key issue for the effective maintenance of the structural system and to help reduce nonstructural earthquake damage. The primary objectives of this study are to evaluate seismic design requirements and the seismic performance of gas and fire protection piping systems installed in reinforced concrete (RC) buildings. In order to characterize the seismic behavior of the existing piping system in an official building, 10 simulated earthquakes and 9 recorded real earthquakes were applied to ground level and the building system by the newmark average acceleration time history method. The results developed by this research can be used for the improvement of new seismic code/regulatory guidelines of secondary systems as well as the improvement of seismic retrofitting or the strengthening of the current piping system.

The Effect of Negative Pressure Phase in Blast Load Profile on Blast Wall of Offshore Plant Topside (해양플랜트 Topside 방화벽에 폭발압의 부압구간이 미치는 영향)

  • Kang, Ki-Yeob;Choi, Kwang-Ho;Ryu, Yong-Hee;Choi, Jae-Woong;Lee, Jae-Myung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.27 no.4
    • /
    • pp.281-288
    • /
    • 2014
  • As a gas explosion is the most fatal accident in shipbuilding and offshore plant industries, all safety critical elements on the topside of offshore platforms should retain their integrity against blast pressure. Even though many efforts have been devoted to develop blast-resistant design methods in the offshore engineering field, there still remain several issues needed to be carefully investigated. From a procedure for calculation of explosion design pressure, impulse of a design pressure model having completely positive side only is determined by the absolute area of each obtained transient pressure response through the CFD analysis. The negative pressure phase in a general gas explosion, however, is often quite considerable unlike gaseous detonation or TNT explosion. The main objective of this study is to thoroughly examine the effect of the negative pressure phase on structural behavior. A blast wall for specific FPSO topside is selected to analyze structural response under the blast pressure. Because the blast wall is considered an essential structure for blast-resistant design. Pressure time history data were obtained by explosion simulations using FLACS, and the nonlinear transient finite element analyses were performed using LS-DYNA.

Structural Design and Analysis of a Hydraulic Coiling Arm for Offshore Wind-turbine Submarine Cable (해상풍력 해저케이블 하역용 유압식 코일링 암 구조설계 및 해석)

  • Kim, Myung-Hwan;Kim, Dong-Hyun;Oh, Min-Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.1-7
    • /
    • 2013
  • Structural design and analysis of a coiling arm unloading machine for submarine cable have been originally conducted in this study. Three-dimensional CAD modeling process is practically applied for the structural design in detail. Finite element method(FEM) and multi-body dynamics(MBD) analyses are also used to verify the safety and required motions of the designed coiling arm structure. The effective moving functions of the designed coiling arm with respect to rotational and radial motions are achieved by adopting bearing-roller mechanical parts and hydraulic system. Critical design loading conditions due to its self weight, carrying cables, offshore wind, and hydraulic system over operation conditions are considered for the present structural analyses. In addition, possible inclined ground conditions for the installation of the designed coiling arm are also considered to verify overturn stability. The present hydraulic type coiling arm system is originally designed and developed in this study. The developed coiling arm has been installed at a harbor, successfully tested its operational functions, and finished practical unloading mission of the submarine cable.

Estimation of design floods for ungauged watersheds using a scaling-based regionalization approach (스케일링 기법 기반의 지역화를 통한 미계측 유역의 설계 홍수량 산정)

  • Kim, Jin-Guk;Kim, Jin-Young;Choi, Hong-Geun;Kwon, Hyun-Han
    • Journal of Korea Water Resources Association
    • /
    • v.51 no.9
    • /
    • pp.769-782
    • /
    • 2018
  • Estimation of design floods is typically required for hydrologic design purpose. Design floods are routinely estimated for water resources planning, safety and risk of the existing water-related structures. However, the hydrologic data, especially streamflow data for the design purposes in South Korea are still very limited, and additionally the length of streamflow data is relatively short compared to the rainfall data. Therefore, this study collected a large number design flood data and watershed characteristics (e.g. area, slope and altitude) from the national river database. We further explored to formulate a scaling approach for the estimation of design flood, which is a function of the watershed characteristics. Then, this study adopted a Hierarchical Bayesian model for evaluating both parameters and their uncertainties in the regionalization approach, which models the hydrologic response of ungauged basins using regression relationships between watershed structure and model. The proposed modeling framework was validated through ungauged watersheds. The proposed approach have better performance in terms of correlation coefficient than the existing approach which is solely based on area as a predictor. Moreover, the proposed approach can provide uncertainty associated with the model parameters to better characterize design floods at ungauged watersheds.

Parametric Study on 3-way Switch Design Considering Levitation Stability of Maglev Train (자기부상열차의 부상안정성을 고려한 3방향 분기기의 설계 파라미터 연구)

  • Lee, Younghak;Han, Jong-Boo;Lim, Jaewon;Lee, Jong-Min
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.135-144
    • /
    • 2016
  • It is essential to lighten the weight of switch girders in order to reduce their costs of manufacturing and make it easier to use them in construction. Lightening the weight of switch is also important to the Maglev 3-way switches system, however, the design variables should be considered very carefully if lightening is to be applied to the system, because these variables are vitally related to the levitation stability. Because Urban Maglev trains have a structure in which train bogie wraps around the guiderail, the adjustment of a girder's height is a possible way to reduce the weight. The safety of the application of this concept is ensured by repeated experiments in a test bed, however, due to a lack of space and budget limits, the design parametric study for the system model can substitute for actual application. The purpose of this paper is to study the design parameters that are concerned with levitation stability while a Maglev train is running on the Maglev 3-way system depending on the weight of the switch girders. In this study, switch girder weight is reduced by adjustment of girder height and girders are and modeled as a flexible body. The effect of the adjustment of girder height on the levitation stability can be analyzed by comparing the velocity of the train when it passes the switch girders, with the lateral gap, and the levitation gap which are obtained from the co-simulation of the Maglev train's dynamics model and flexible switching system. The results of this research will be used to design a Maglev switch.

Development of Multi-span Plastic Greenhouse for Tomato Cultivation (토마토 재배용 연동 플라스틱 온실 개발)

  • Yu, In Ho;Lee, Eung Ho;Cho, Myeong Whan;Ryu, Hee Ryong;Kim, Young Chul
    • Journal of Bio-Environment Control
    • /
    • v.21 no.4
    • /
    • pp.428-436
    • /
    • 2012
  • This study aimed to develop the multi-span plastic greenhouse which is suitable for tomato cultivation and is safe against climatic disasters such as typhoon or heavy snow. The width and heights of eaves and ridge of newly developed tomato greenhouse are 7, 4.5 and 6.5 m, respectively. The width is the same but the eaves and ridge heights are 1.8 and 2 m higher than conventional 1-2 W greenhouses, respectively. Cross beam has been designed as a truss structure so it can sustain loads of tomato and equipment. Tomato greenhouse has been designed according to climatic disaster preventing design standard maintaining the high height. In other words, the material dimensions and interval of materials including column and rafter have been set to stand against $40m{\cdot}s^{-1}$ of wind and 40 cm of snow. Tomato greenhouse has been equipped with rack-pinion type roof vents which have been used in glass greenhouse in order to prevent excessive rise in air temperature. This vent type is different from that of 1-2 W type greenhouse which is made by rolling up and down the vinyl at upper part of column. Roof vents are installed at ridge, and thus external air inflow and natural ventilation are maximized. As the height increases, heating cost increase as well and, therefore, tomato greenhouse has been equipped with multi-layered thermal curtain, of which thermo-keeping is excellent, to prevent heat from escaping.

Analysis on Energy Demand Resulting From the Change in Window Area & Installation of Interior Exterior Blinds (기존 노후건축물의 최적 리모델링 개선안 연구)

  • Kim, Dae-Won;Chung, Kwang-Seop;Kim, Young-Il;Nam, Ariasae;Oh, Se Min
    • Journal of Energy Engineering
    • /
    • v.23 no.2
    • /
    • pp.207-216
    • /
    • 2014
  • The energy loss can be divided into the loss caused by heat transfer and the loss caused by air flow. Heat transfer is the loss resulting from the heat transmittance of external wall, roof, and floor, and represents one of the most vulnerable elements of existing buildings. To prevent such loss, it is necessary to increase the mean heat transmittance of entire external wall, including the window, to a level above the standard regional value and ensure the air-tightness of window. The old buildings have the structure which is prone to the loss of greater air flow due to the air infiltration through the exit/entrance door upward along the stairway by the stack effect and simultaneous suction of air from each floor, and becomes even vulnerable to the loss of heat insulation for each floor, although the external wall and windows are the most vulnerable parts. The improvement plans for each floor need to be submitted in tandem with the diagnosis of whole building, regarding the diagnosis plan and energy improvement measures based on the survey of site, rather than adhering to the misconception that the replacement of window alone will result in energy-savings.

Sensitivity Analysis of Model Parameters used in a Coupled Dam-Break/FLO-2D Model to Simulate Flood Inundation (FLO-2D에서 댐붕괴 모형 매개변수의 침수 범위 민감도 분석)

  • Lee, Khil-Ha;Son, Myung-Ho;Kim, Sung-Wook;Yu, Soonyoung;Cho, Jin-Woo;Kim, Jin-Man;Jung, Jung-Kyu
    • The Journal of Engineering Geology
    • /
    • v.24 no.1
    • /
    • pp.53-67
    • /
    • 2014
  • Numerical modeling is commonly used to reproduce the physical phenomena of dam-break and to compile resulting flood hazard maps. The accuracy of a dam-break model depends on the physical structure that describes the volume of storage, breach formation and progress, input variables, and model parameters. Model input and parameters are subjective in that they are prescribed; hence, caution is needed when interpreting the results. This study focuses on three parameters (breach degree ${\theta}$, shape factor P, and collapse rate k) used when the dam-break model is coupled with FLO-2D (a two-dimensional flood simulation model) to estimate flood coverage and depth etc. The results show that the simulation is sensitive to the shape factor P and the collapse rate k but not to the breach degree ${\theta}$. This study will contribute to reducing flood damage from dam-break disasters in the future.

Stability Evaluation of Rear-Parapet Caisson Breakwaters under Regular Waves by Numerical Simulation (수치해석을 통한 규칙파를 받는 후부 패러핏 케이슨 방파제의 안정성 평가)

  • Lee, Byeong Wook;Park, Woo-Sun;Ahn, Sukjin
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.32 no.2
    • /
    • pp.95-105
    • /
    • 2020
  • In this study, using the CADMAS-SURF model, the characteristics of the wave pressures and the wave forces were analyzed according to the installation position of the parapet on top of the caisson, and the stability evaluation was carried out using estimated wave forces for the design wave condition. Numerical results show that adopting the rear-parapet reduces the front maximum wave pressures and wave forces, and the maximum wave pressure acting on the rear-parapet increases slightly compared to the front parapet, but the wave force acting on the rear-parapet has little effect on the stability of the breakwater due to the phase difference with the wave force acting on the front of the breakwater. In addition, impulsive wave pressures did not occur, as Yamamoto et al. (2013) pointed out the problem of the rear-parapet breakwater. As a result of the stability against sliding and overturning, it was estimated that the target safety factor of 1.2 could be secured by the self-weight of 13% less than the case of the front parapet. At this time, the maximum ground pressure was also reduced by 30%, and the applicability of the rear-parapet structure to the actual site was evaluated as high.

Estimation of buckling and collapse behaviour for continuous stiffened plate under combined transverse axial compression and lateral pressure (조합하중을 받는 연속보강판의 좌굴 및 붕괴거동 평가)

  • Park, Joo-Shin;Choi, Joung-Hwan;Hong, Kwan-Young;Lee, Gyoung-Woo
    • Journal of Navigation and Port Research
    • /
    • v.33 no.1
    • /
    • pp.27-33
    • /
    • 2009
  • Estimation of the buckling and ultimate strength of a continuous stiffened plate subjected to combined transverse compression and lateral pressure is of high importance to ensure the safety of ship structures, particularly for the bottom plating under a deep draft condition For example, bottom plating of bulk carriers is subjected to transverse thrust caused by the bending of double bottom structure and the direct action of pressure on the side shells. Most of experimental tests, theoretical approach and numerical researches have been performed on the buckling and ultimate strength behaviour of plates or stiffened plates under combined compression and lateral pressure. With regard to stiffened panels, however, most of studies have been concerned with the load conditions of combined longitudinal thrust and lateral pressure, while fewer studies have been performed for the combined transverse thrust and lateral pressure. In addition, the previous researches are mainly concerned with an isolated rectangular plate simply supported along the all edges, whereas actual ship plating is continuous across the transverse frames and heavy girders. In the present paper, a series of elastoplastic large deflection FEA on a continuous stiffened plate is performed and then clarify the characteristic of collapse mode and explain the effect of transverse compression.