• 제목/요약/키워드: Structure load

검색결과 4,706건 처리시간 0.068초

포스트텐션에 의한 격자 돔형 공간 구조의 거동 특성 (Behaviour Characteristic of Grid Dome Shaped Space Structures by Post-tensioning)

  • 김진우
    • 한국해양공학회지
    • /
    • 제16권1호
    • /
    • pp.41-45
    • /
    • 2002
  • This paper is concerned with the erection and ultimate load test of dome shaped space structures by post-tensioning. It is a fast and economical method for constructing such a dome by post-tensioning of the cable in bottom chords. This structure consists of uniform pyramids in a flat layouts on the ground, and then the structure is shaped and erected into its final curved space structure. Ultimate load test was performed for dome shaped space structures. The feasibility of the proposed erection method and the reliability of the established geometric model were confirmed with numerical analysis and experimental investigation on a small scale steel model. As a results we can find the most reasonable modeling technique for the prediction of shape formation in practices and we can know the characteristic of the behaviour in ultimate load test for practical design purposes.

헬리콥터 탑재 비행 시험을 위한 파드 시스템 구조 설계 (Structural Design of pod system for Helicopter Captive Flight Test)

  • 최장섭
    • 한국군사과학기술학회지
    • /
    • 제16권6호
    • /
    • pp.779-788
    • /
    • 2013
  • The load requirements should be known to design mechanical structure. This paper proposes a generation method of load requirements using U.S. military specification to design the external mounting structure of the helicopters of which the flight environments such as aerodynamic forces and inertia forces are unknown. In this study, the load requirements which were applied at the design of the pod structure for helicopter captive flight test could be computed by using this method. The validation of proposed method was confirmed from the test flight using developed pod system.

Behaviour factor and displacement estimation of low-ductility precast wall system under seismic actions

  • Tiong, Patrick L.Y.;Adnan, Azlan;Hamid, Nor H.A.
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.625-655
    • /
    • 2013
  • This paper investigated the seismic behaviour of an innovated non-ductile precast concrete wall structural system; namely HC Precast System (HCPS). The system comprises load-bearing precast wall panels merely connected only to column at both ends. Such study is needed because there is limited research information available in design codes for such structure particularly in regions having low to moderate seismicity threats. Experimentally calibrated numerical model of the wall system was used to carry out nonlinear pushover analyses with various types of lateral loading patterns. Effects of laterally applied single point load (SPL), uniformly distributed load (UDL), modal distributed load (MDL) and triangular distributed load (TDL) onto global behaviour of HCPS were identified. Discussion was focused on structural performance such as ductility, deformability, and effective stiffness of the wall system. Thus, a new method for engineers to estimate the nonlinear deformation of HCPS through linear analysis was proposed.

전통건축물에서 도리의 지붕하중 분담비율에 관한 연구 (A Research for apportionment ratio of Roof Load in Traditional Wooden Structure's Dori)

  • 황종국
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.247-250
    • /
    • 2007
  • In korean traditional wooden structure, to know the critical pass of roof load transmission is very important. to know the critical pass of roof load transmission and to find the role of each dori members, used loading block and load cell. The total weight of loading blocks was 5,8880 N and the number of loading blocks were 16, The experimental fran1e has 1/2 scale. From middle-dori to outside-dori, the linearity of line can't guarantee. So, the distribution of roof load in dori is effected by the initial state of dori. In this research, to remove the effect of initial state, initial deformation was allowed by initial setting.

  • PDF

금속재 세미 모노코크 콘형 구조체의 정적 구조 시험

  • 박순홍;장영순;이영무
    • 항공우주기술
    • /
    • 제4권1호
    • /
    • pp.129-142
    • /
    • 2005
  • KSLV-I의 위성 어댑터의 구조 형식으로 결정된 세미 모노코크 형식의 잘려진 원뿔형 구조체를 제작하고, 정적 구조 시험을 수행하였다. 설계 하중에 따라 순수 압축, 순수 굽힘, 순수 전단, 복합 하중을 가하여 변형률 및 변위를 측정하고, 구조의 건전성을 확인하였다. 최종적으로 파괴 시험을 수행하여, 국부 좌굴 모드 및 파괴 형상을 관찰하였으며, 파괴하중 및 모드를 유한 요소법으로 해석하여 비교한 결과 정확한 파괴 하중의 예측이 가능하였다.

  • PDF

문형식 표지판 지지대의 모멘트 분포와 변형에 대한 해석 및 안정성 분석

  • 임형태;김소형;박성현
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.251-256
    • /
    • 2015
  • In this paper, an systematic approach is presented, in which the bridge-type traffic sign structure is body out by CSDDA PrePost Processor. There is dead load and wind load that is working on the structure which will make force and moment. Analyzied the stress distribution of the standard form and by changing the shape, compared the safety in terms of deflection and stress (with the standard form) to know the effect of each component in the bridge-type traffic sign structure. The safety of deflection and stress is evaluated by maximum distance/100) and ASIC code respectively. The standard form of bridge-type traffic sign structure is established by two pairs of pillar and two pairs of floor beam. Replaced the links which is consist of flange and screws as the torsion spring and nm our analysis program. By adjusting variable of rigidity modulus of torsion spring, moment between column and beam is controled depending on value of rigidity modulus.

  • PDF

공기로 지지되는 수직 아치의 구조거동에 관한 연구 (A study on the structural behaviors of air-pressurized vertical arch)

  • 김재열;이장복;권택진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1998년도 가을 학술발표회 논문집
    • /
    • pp.274-279
    • /
    • 1998
  • The structural behaviors of a arch composed of flexible membrane are investigated. The membrane is considered as thin shell with internal pressure during FEM analysis by using ABAQUS. In the paper, a wind load and uniformly distributed vertical load are considered. As a vertical load, snow loads including applied over all and half of the structure are introduced. The ends of arch are fixed to the ground. Load-Deflections relationship, buckling mode of the structure are presented.

  • PDF

도로 부대시설 지주구조물 설계를 위한 풍하중조합의 신뢰도 분석 (Reliability Analysis of Design Wind Load Combination for Support Structures of Subsidiary Road Facilities)

  • 김근옥;안상섭;김호경;조경식;백인열
    • 한국도로학회논문집
    • /
    • 제19권4호
    • /
    • pp.27-36
    • /
    • 2017
  • PURPOSES : The purpose of this study is to perform a reliability analysis of the proposed wind load combination which governs the design of support structures of subsidiary road facilities, and to evaluate whether the target reliability of the design is satisfied. METHODS : The statistical estimation method is applied and the design period of the support structure is used to obtain the statistical property of the wind load. In addition, the statistical properties of the strength of support structures are obtained from a literature review and simulation study. Actual support structures are designed by the proposed load combination and are used as the examples to examine if the target reliability is obtained. RESULTS : The result of the reliability analysis performed by using the statistical properties of load and resistance for the support structure in this study indicates that the proposed wind load combination satisfied the target reliability index of the design. Also, the convenience of the design is achieved by adopting the same design wind velocity given in the bridge design code by applying the wind velocity ratio defined for the design period of the support structure. CONCLUSIONS : It is presented that the design using the wind load combination proposed in this study achieved the target reliability index and the design wind load for different design periods can be conveniently defined by applying the velocity ratio proposed in this study.

Concrete columns reinforced with Zinc Oxide nanoparticles subjected to electric field: buckling analysis

  • Arbabi, Amir;Kolahchi, Reza;Bidgoli, Mahmood Rabani
    • Wind and Structures
    • /
    • 제24권5호
    • /
    • pp.431-446
    • /
    • 2017
  • As concrete is most usable material in construction industry it's been required to improve its quality. Nowadays, nanotechnology offers the possibility of great advances in construction. In this study, buckling of horizontal concrete columns reinforced with Zinc Oxide (ZnO) nanoparticles is analyzed. Due to the presence of ZnO nanoparticles which have piezoelectric properties, the structure is subjected to electric field for intelligent control. The Column is located in foundation with vertical springs and shear modulus constants. Sinusoidal shear deformation beam theory (SSDBT) is applied to model the structure mathematically. Micro-electro-mechanic model is utilized for obtaining the equivalent properties of system. Using the nonlinear stress-strain relation, energy method and Hamilton's principal, the motion equations are derived. The buckling load of the column is calculated by Difference quadrature method (DQM). The aim of this study is presenting a mathematical model to obtain the buckling load of structure as well as investigating the effect of nanotechnology and electric filed on the buckling behavior of structure. The results indicate that the negative external voltage applied to the structure, increases the stiffness and the buckling load of column. In addition, reinforcing the structure by ZnO nanoparticles, the buckling load of column is increased.

Flow Truss Dome 구조물의 비대칭 하중모드에 따른 불안정 현상에 관한 연구 (A Study of Unstable Phenomenon of Flow Truss Dome Structure with Asymmetric Load Modes)

  • 손수덕;김승덕;강문명
    • 한국공간구조학회논문집
    • /
    • 제2권4호
    • /
    • pp.61-76
    • /
    • 2002
  • The structure system that is discreterized by continuous shells is usually used to make a large space structures and these structures show the collapse mechanisms that are captured at over the limit load, and snap-through and bifurcation are most well known of it. For the collapse mechanism, rise-span ratio, element stiffness and load mode are main factor, which it give an effect to unstable behavior. Moreover, resist force of structure can be reduced by initial condition and initial imperfection significantly. In order to investigate the instability of shell structures, the finite deformation theory can be applied and it becomes a nonlinear mathematics in which use equation of tangential stiffness incrementally. With an initial imperfection, using simple example and Flow Truss Dome, the buckling characteristics of space truss is main purpose of this paper, and unstable behavior is studied by proposed the numerical method. Also, by using MIDAS, this research work analyzes displacements and inner forces as the design load of model, and the ratio of buckling load of design load is investigated.

  • PDF