• Title/Summary/Keyword: Structure identification

Search Result 1,727, Processing Time 0.026 seconds

Crack Identification Using Optimization Technique (수학적 최적화기법을 이용한 결함인식 연구)

  • Seo, Myeong-Won;Yu, Jun-Mo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.1 s.173
    • /
    • pp.190-195
    • /
    • 2000
  • It has been established that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure. Nikolakopoulos et. al. used the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However the intersecting point of the superposed contours is not only difficult to find but also incorrect to calculate. A method is presented in this paper which uses optimization technique for the location and depth of the crack. The basic idea is to find parameters which use the structural eigenfrequencies on crack depth and location and optimization algorithm. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. Method of optimization is augmented lagrange multiplier method and search direction method is BFGS variable metric method and one dimensional search method is polynomial interpolation.

Optimization of Fuzzy Set-Fuzzy Systems based on IG by Means of GAs with Successive Tuning Method

  • Park, Keon-Jun;Oh, Sung-Kwun;Kim, Hyun-Ki
    • Journal of Electrical Engineering and Technology
    • /
    • v.3 no.1
    • /
    • pp.101-107
    • /
    • 2008
  • We introduce an optimization of fuzzy set-fuzzy systems based on IG (Information Granules). The proposed fuzzy model implements system structure and parameter identification by means of IG and GAs. The concept of information granulation was coped with to enhance the abilities of structural optimization of the fuzzy model. Granulation of information realized with C-Means clustering helps determine the initial parameters of the fuzzy model such as the initial apexes of the membership functions in the premise part and the initial values of polynomial functions in the consequence part of the fuzzy rules. The initial parameters are adjusted effectively with the help of the GAs and the standard least square method. To optimally identify the structure and the parameters of the fuzzy model we exploit GAs with successive tuning method to simultaneously search the structure and the parameters within one individual. We also consider the variant generation-based evolution to adjust the rate of identification of the structure and the parameters in successive tuning method. The proposed model is evaluated with the performance of the conventional fuzzy model.

Crack Identification Using Evolutionary Algorithms in Parallel Computing Environment (병렬 환경하의 진화 이론을 이용한 결함인식)

  • Sim, Mun-Bo;Seo, Myeong-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.9
    • /
    • pp.1806-1813
    • /
    • 2002
  • It is well known that a crack has an important effect on the dynamic behavior of a structure. This effect depends mainly on the location and depth of the crack. To identify the location and depth of a crack in a structure, a classical optimization technique was adopted by previous researchers. That technique overcame the difficulty of finding the intersection point of the superposed contours that correspond to the eigenfrequency caused by the crack presence. However, it is hard to select a trial solution initially for optimization because the defined objective function is heavily multimodal. A method is presented in this paper, which uses continuous evolutionary algorithms(CEAs). CEAs are effective for solving inverse problems and implemented on PC clusters to shorten calculation time. With finite element model of the structure to calculate eigenfrequencies, it is possible to formulate the inverse problem in optimization format. CEAs are used to identify the crack location and depth minimizing the difference from the measured frequencies. We have tried this new idea on a simple beam structure and the results are promising with high parallel efficiency over about 94%.

Shaking Table Test of a Full Scale 3 Story Steel Frame with Friction Dampers (마찰형 감쇠장치가 설치된 실물크기 3층 철골프레임의 진동대 실험)

  • Bae, Chun-Hee;Kim, Yeon-Whan;Lee, Sang-Hyun;Park, Young-Pil
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.17 no.9
    • /
    • pp.862-873
    • /
    • 2007
  • Energy dissipation devices can be considered as an alternative for the seismic performance enhancement of existing structures based on the strengthened seismic design code. In this study, seismic response mitigation effects of friction dampers are investigated through the shaking table test of a full scale 3 story building structure. Frist, the bilinear force-displacement relationship of a structure-brace-friction damper system and the effect of brace-friction damper on the increase of frequency and damping ratio are identified. Second, frequency, displacement, and torque dependent characteristics of the friction damper are investigated by using harmonic load excitation tests. Finally, the shaking table tests are performed for a full scale 3 story steel frame. System identification results using random signal excitation indicated that brace-friction damper increased structural damping ratio and frequency, and El Centro earthquake test showed that brace-friction damper reduced the peak displacement and acceleration significantly. In particular, it was observed that the damping effect due to friction damper becomed obvious when the structure was excited by more intensive load causing frequent slippage of the friction dampers.

Estimation of Wind-induced Responses of a Tall Building Structure for Designing Active Controller (능동제어기 설계를 위한 고층 건물의 풍응답 추정)

  • Park, Hyun-Heum;Mun, Dae-Ho;Lee, Sang-Hyun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.30 no.2
    • /
    • pp.159-167
    • /
    • 2017
  • The purpose of this study is to accurately estimate the wind-induced responses of a tall building structure for using the estimated responses in the process of calculating the optimal force of an active control device. Kalman filter was used for the estimation process and a 3-storied model structure on a shaking table was tested for the verification of the estimation accuracy. The system matrices of the model were constructed based on the mode parameters obtained by the system identification. The estimated displacement matched up well with the measured one. Finally, the wind-induced responses of a real 39-storied building structure excited by the typhoon MUIFA were estimated.

Damage evaluation of seismic response of structure through time-frequency analysis technique

  • Chen, Wen-Hui;Hseuh, Wen;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.9 no.2
    • /
    • pp.107-127
    • /
    • 2022
  • Structural health monitoring (SHM) has been related to damage identification with either operational loads or other environmental loading playing a significant complimentary role in terms of structural safety. In this study, a non-parametric method of time frequency analysis on the measurement is used to address the time-frequency representation for modal parameter estimation and system damage identification of structure. The method employs the wavelet decomposition of dynamic data by using the modified complex Morlet wavelet with variable central frequency (MCMW+VCF). Through detail discussion on the selection of model parameter in wavelet analysis, the method is applied to study the dynamic response of both steel structure and reinforced concrete frame under white noise excitation as well as earthquake excitation from shaking table test. Application of the method to building earthquake response measurement is also examined. It is shown that by using the spectrogram generated from MCMW+VCF method, with suitable selected model parameter, one can clearly identify the time-varying modal frequency of the reinforced concrete structure under earthquake excitation. Discussions on the advantages and disadvantages of the method through field experiments are also presented.

Multi-Sized cumulative Summary Structure Driven Light Weight in Frequent Closed Itemset Mining to Increase High Utility

  • Siva S;Shilpa Chaudhari
    • Journal of information and communication convergence engineering
    • /
    • v.21 no.2
    • /
    • pp.117-129
    • /
    • 2023
  • High-utility itemset mining (HIUM) has emerged as a key data-mining paradigm for object-of-interest identification and recommendation systems that serve as frequent itemset identification tools, product or service recommendation systems, etc. Recently, it has gained widespread attention owing to its increasing role in business intelligence, top-N recommendation, and other enterprise solutions. Despite the increasing significance and the inability to provide swift and more accurate predictions, most at-hand solutions, including frequent itemset mining, HUIM, and high average- and fast high-utility itemset mining, are limited to coping with real-time enterprise demands. Moreover, complex computations and high memory exhaustion limit their scalability as enterprise solutions. To address these limitations, this study proposes a model to extract high-utility frequent closed itemsets based on an improved cumulative summary list structure (CSLFC-HUIM) to reduce an optimal set of candidate items in the search space. Moreover, it employs the lift score as the minimum threshold, called the cumulative utility threshold, to prune the search space optimal set of itemsets in a nested-list structure that improves computational time, costs, and memory exhaustion. Simulations over different datasets revealed that the proposed CSLFC-HUIM model outperforms other existing methods, such as closed- and frequent closed-HUIM variants, in terms of execution time and memory consumption, making it suitable for different mined items and allied intelligence of business goals.

Dynamic System Identification Using a Recurrent Compensatory Fuzzy Neural Network

  • Lee, Chi-Yung;Lin, Cheng-Jian;Chen, Cheng-Hung;Chang, Chun-Lung
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.5
    • /
    • pp.755-766
    • /
    • 2008
  • This study presents a recurrent compensatory fuzzy neural network (RCFNN) for dynamic system identification. The proposed RCFNN uses a compensatory fuzzy reasoning method, and has feedback connections added to the rule layer of the RCFNN. The compensatory fuzzy reasoning method can make the fuzzy logic system more effective, and the additional feedback connections can solve temporal problems as well. Moreover, an online learning algorithm is demonstrated to automatically construct the RCFNN. The RCFNN initially contains no rules. The rules are created and adapted as online learning proceeds via simultaneous structure and parameter learning. Structure learning is based on the measure of degree and parameter learning is based on the gradient descent algorithm. The simulation results from identifying dynamic systems demonstrate that the convergence speed of the proposed method exceeds that of conventional methods. Moreover, the number of adjustable parameters of the proposed method is less than the other recurrent methods.

Particle relaxation method for structural parameters identification based on Monte Carlo Filter

  • Sato, Tadanobu;Tanaka, Youhei
    • Smart Structures and Systems
    • /
    • v.11 no.1
    • /
    • pp.53-67
    • /
    • 2013
  • In this paper we apply Monte Carlo Filter to identifying dynamic parameters of structural systems and improve the efficiency of this algorithm. The algorithms using Monte Carlo Filter so far has not been practical to apply to structural identification for large scale structural systems because computation time increases exponentially as the degrees of freedom of the system increase. To overcome this problem, we developed a method being able to reduce number of particles which express possible structural response state vector. In MCF there are two steps which are the prediction and filtering processes. The idea is very simple. The prediction process remains intact but the filtering process is conducted at each node of structural system in the proposed method. We named this algorithm as relaxation Monte Carlo Filter (RMCF) and demonstrate its efficiency to identify large degree of freedom systems. Moreover to increase searching field and speed up convergence time of structural parameters we proposed an algorithm combining the Genetic Algorithm with RMCF and named GARMCF. Using shaking table test data of a model structure we also demonstrate the efficiency of proposed algorithm.

Assessment of sensitivity-based FE model updating technique for damage detection in large space structures

  • Razavi, Mojtaba;Hadidi, Ali
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.3
    • /
    • pp.261-281
    • /
    • 2020
  • Civil structures may experience progressive deterioration and damage under environmental and operational conditions over their service life. Finite element (FE) model updating method is one of the most important approaches for damage identification in structures due to its capabilities in structural health monitoring. Although various damage detection approaches have been investigated on structures, there are limited studies on large-sized space structures. Thus, this paper aims to investigate the applicability and efficiency of sensitivity-based FE model updating framework for damage identification in large space structures from a distinct point of view. This framework facilitates modeling and model updating in large and geometric complicated space structures. Considering sensitivity-based FE model updating and vibration measurements, the discrepancy between acceleration response data in real damaged structure and hypothetical damaged structure have been minimized through adjusting the updating parameters. The feasibility and efficiency of the above-mentioned approach for damage identification has finally been demonstrated with two numerical examples: a flat double layer grid and a double layer diamatic dome. According to the results, this method can detect, localize, and quantify damages in large-scaled space structures very accurately which is robust to noisy data. Also, requiring a remarkably small number of iterations to converge, typically less than four, demonstrates the computational efficiency of this method.