• 제목/요약/키워드: Structure and dynamics

검색결과 1,941건 처리시간 0.027초

제주도 노루의 개체수 관리를 위한 확장적 피식-포식모형의 적용에 관한 연구 (Application of an Augmented Predator-Prey Model to the Population Dynamics of Roe Deer in Jeju)

  • 전대욱;김도훈
    • 한국시스템다이내믹스연구
    • /
    • 제12권2호
    • /
    • pp.95-126
    • /
    • 2011
  • This paper aims at developing a System Dynamics model with an augmented predator-prey interaction structure to deal with the population management of roe deer in Jeju, Korea. Although people still regard the creature as one of the important tourist attractions, there has been much debate on the issues of the appropriateness of the population size of roe deers because they have been stigmatized as crop damagers, and roadkill/poaching victims due to their natural habit to move around from the top mountain to the lowland of the island. The model is therefore to incorporate these migrating and grazing behaviors into an augmented Lotka-Volterra model coupling roe deer population in both parts of the island to that of predators and preys of the species. The authors also provide a comprehensive set of dynamic hypotheses and relevant CLD/SFD to understand the population dynamics of roe deer and co-evolving species and perform the steady-state analysis of the proposed equation system to verify the model behavior of the numerical example lastly presented in this paper.

  • PDF

Molecular Dynamics Simulations of Small n-Alkane Clusters in a Mesoscopic Solvent

  • Ko, Seo-Young;Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • 제24권6호
    • /
    • pp.771-776
    • /
    • 2003
  • The structural and dynamic properties of small n-alkane clusters embedded in a mesoscopic solvent are investigated. The solvent interactions are taken into account through a multi-particle collision operator that conserves mass, momentum and energy and the solvent dynamics is updated at discrete time intervals. The cluster molecules interact among themselves and with the solvent molecules through intermolecular forces. The properties of n-heptane and n-decane clusters interacting with the mesoscopic solvent molecules through repulsive Lennard-Jones interactions are studied as a function of the number of the mesoscopic solvent molecules. Modifications of both the cluster and solvent structure as a result of cluster-solvent interactions are considered. The cluster-solvent interactions also affect the dynamics of the small n-alkane clusters.

A Short Review on the Application of Combining Molecular Docking and Molecular Dynamics Simulations in Field of Drug Discovery

  • Kothandan, Gugan;Ganapathy, Jagadeesan
    • 통합자연과학논문집
    • /
    • 제7권2호
    • /
    • pp.75-78
    • /
    • 2014
  • Computer-aided drug design uses computational chemistry to discover, enhance, or study drugs and related biologically active molecules. It is now proved to be effective in reducing costs and speeding up drug discovery. In this short review, we discussed on the importance of combining molecular docking and molecular dynamics simulation methodologies. We also reviewed the importance of protein flexibility, refinement of docked complexes using molecular dynamics and the use of free energy calculations for the calculation of accurate binding energies has been reviewed.

시스템다이내믹스 기법을 이용한 온실가스 감축정책 평가 (System Dynamics Application for the Evaluation of Greenhouse Gases Reduction Policy)

  • 장남정;김민경;양고수
    • 한국시스템다이내믹스연구
    • /
    • 제14권1호
    • /
    • pp.55-68
    • /
    • 2013
  • It is necessary to evaluate the greenhouse gases (GHGs) reduction policy by central and regional governments to set up the suitable GHG emissions measures. Quantitative, qualitative and synthetic methods have been adopted by previous researches to estimate GHG reduction policy. However, these methods mostly focused on the results of the reduction policy, rather than understanding and fixing the integrated structures of GHG emissions. In this research, System Dynamics(SD) was applied to 1 million green homes program, self-carfree-day system and carbon point program. The results showed that SD analyses could be appliable for the estimation of GHG reduction policy by developing the feedback loops and dynamic simulation model. SD can be consider as a supplementary tool to estimate the GHG reduction policies through the recognition of the structure in complex real system.

  • PDF

내설악 전나무 자연림 조사를 통한 고전천이론과 임분동태학에 관한 고찰 - Patch Dynamic과 임분 구조를 중점으로 - (Classic Successional Theory and Stand Dynamics Studies on Fir Stand of Natural Forests in Naesorak Mt. - Focused on Patch Dynamics and Structure -)

  • 윤영일
    • 환경생물
    • /
    • 제25권2호
    • /
    • pp.158-167
    • /
    • 2007
  • 내설악 전나무림 현황을 조사하고 이를 통하여 산림 생태계 이해방식을 비판적으로 고찰하였다. 조사는 1996년부터 2006년까지 수행된 것으로 일종의 중간보고서로 작성하였다. 임분의 수직구조 위주로 조사하였으며 비록 내설악 전나무림에 한정된 것이기는 하나 고전 천이론 보다는 Stand dynamic이 산림생태계를 설명하는데 적합하다는 것을 확인할 수 있었다.

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.286-286
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

신경회로망에 의한 미지의 구조를 가진 시변동적시스템의 지능적 예측제어 (Intelligent Predictive Control of Time-Varying Dynamic Systems with Unknown Structures Using Neural Networks)

  • 오세준
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제20권3호
    • /
    • pp.154-161
    • /
    • 1996
  • A neural predictive tracking system for the control of structure-unknown dynamic system is presented. The control system comprises a neural network modelling mechanism for the the forward and inverse dynamics of a plant to be controlled, a feedforward controller, feedback controller, and an error prediction mechanism. The feedforward controller, a neural network model of the inverse dynamics, generates feedforward control signal to the plant. The feedback control signal is produced by the error prediction mechanism. The error predictor adopts the neural network models of the forward and inverse dynamics. Simulation results are presented to demonstrate the applicability of the proposed scheme to predictive tracking control problems.

  • PDF

유연다물체 동역학을 이용한 자기부상열차 동역학 모델링 연구 (Modeling of the Maglev Vehicle Running over the Elevated Guideway Using Flexible Multibody Dynamics)

  • 이종민;김영중;김국진;김동성;김숙희;한형석
    • 한국철도학회논문집
    • /
    • 제9권6호
    • /
    • pp.792-797
    • /
    • 2006
  • In general, the Maglev vehicle is ran over the elevated guideway consisted of steel or concrete structure. Since the running behaviour of the vehicle is affected by the flexibility of the guideway, the consideration of the flexibility of guideway is needed for evaluation of dynamics of both the vehicle and guideway. A new technique based on flexible multibody dynamics is proposed to model the Maglev vehicle, levitation controller, and guideway into a coupled model. To verify the technique, an urban Maglev vehicle is analyzed using the technique and discussions are carried out.