• Title/Summary/Keyword: Structure and dynamics

Search Result 1,941, Processing Time 0.033 seconds

A study on the Structure of (62-x)CaO·38Al2O3 ·xBaO Glasses by Molecular Dynamics Simulation (분자동력학법에 의한(62-x)CaO·38Al2O3 ·xBaO 유리의 구조 분석)

  • Lee, Seong-Joo;Kang, Eun-Tne
    • Journal of the Korean Ceramic Society
    • /
    • v.44 no.3 s.298
    • /
    • pp.175-181
    • /
    • 2007
  • Molecular dynamics simulation (MD) of $(62-x)CaO{\cdot}38Al_{2}O_{3}{\cdot}xBaO$ glasses has been carried out using empirical potentials with the covalent term. The simulations closely reproduce the total neutron correlation functions of glass with 5 mol% BaO and physical properties of these glasses such as elastic constants. For these glasses, aluminum is tetrahedrally coordinated by oxygen, but there is a part of five-fold and six-fold coordination of aluminum. There are no major changes to the mid-range structure of glass, as barium is substituted for calcium. To predict the barium coordination number, we have used the bond valence (BV) theory and also compared the results of simulation with Bond valence. The coordination number for oxygen around barium atoms is close to 8 and the average distance of barium and oxygen is nearly 2.80 A. The viscosity of these glasses increases with the content of barium oxide substituted for calcium oxide.

Dynamics of a HDD spindle system due to the change of FDBs (유체베어링의 설계변화에 따른 HDD 스핀들 시스템의 동특성 해석)

  • Park, Ki-Yong;Jang, Gun-Hee
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.407-413
    • /
    • 2008
  • This paper investigates the dynamics of a HDD spindle system due to the change of FDBs. Flying height of the HDD spindle system is determined through the static analysis of the FDBs, and the stiffness and damping coefficients are calculated through the dynamic analysis of the FDBs. Free vibration characteristics and shock response of the HDD spindle system are analyzed by using the finite element method and the mode superposition method. Experimental modal test is also performed to verify the accuracy of the proposed method. This research shows that the stiffness coefficients of journal heating mostly affect the rocking frequencies because their magnitude are within the range of the stiffness of supporting structure. It also shows that the damping coefficients of thrust bearing mostly affect the axial frequency because the stiffness of thrust bearing is much smaller that that of supporting structure.

  • PDF

The Design and Analysis of Composite Advanced Propeller Blade for Next Generation Turboprop Aircraft (차세대 터보프롭 항공기용 복합재 최신 프로펠러 설계 및 해석)

  • Choi, Won;Kim, Kwang-Hae;Lee, Won-Joong
    • The KSFM Journal of Fluid Machinery
    • /
    • v.15 no.6
    • /
    • pp.11-17
    • /
    • 2012
  • The one way fluid structure interaction analysis on advanced propeller blade for next generation turboprop aircraft. HS1 airfoil series are selected as a advanced propeller blade airfoil. Adkins method is used for aerodynamic design and performance analysis with respect to the design point. Adkins method is based on the vortex-blade element theory which design the propeller to satisfy the condition for minimum energy loss. propeller geometry is generated by varying chord length and pitch angle at design point. Blade sweep is designed based on the design mach number and target propulsion efficiency. The aerodynamic characteristics of the designed Advanced propeller were verified by CFD(Computational Fluid Dynamic) and showed the enhanced performance than the conventional propeller. The skin-foam sandwich structural type is adopted for blade. The high stiffness, strength carbon/epoxy composite material is used for the skin and PMI(Polymethacrylimide) is used for the foam. Aerodynamic load is calculated by computational fluid dynamics. Linear static stress analysis is performed by finite element analysis code MSC.NASTRAN in order to investigate the structural safety. The result of structural analysis showed that the design has sufficient structural safety. It was concluded that structural safety assessment should incorporate the off-design points.

Ultra accelerated molecular dynamics study on electronic structure and luminous efficacy of PDP protecting layer

  • Takaba, Hiromitsu;Serizawa, Kazumi;Suzuki, Ai;Tsuboi, Hideyuki;Hatakeyama, Nozomu;Endou, Akira;Kubo, Momoji;Kajiyama, Hiroshi;Miyamoto, Akira
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.169-172
    • /
    • 2009
  • We developed ultra-accelerated quantum chemical molecular dynamics and characterization simulators for study and design of plasma display panel (PDP) related materials. By use of these simulators, realistic structure of PDP materials is drawn on the computer. Furthermore, based on the structures, various properties such as secondary electron emission coefficient are successfully evaluated. In this report, we will discuss the theoretical secondary electron emission coefficient for several protecting layer materials and the effect of surface structure on the properties based on the result of atomistic simulations.

  • PDF

Causal Loop-Based Structural Analyses of Marginal Ageing and Critical Mass Simulations for Demographic Extinction Scenarios in Eup and Myeon Regions (읍·면지역 한계고령화의 인과순환적 구조분석과 인구소멸 임계점에 대한 시뮬레이션)

  • Choi, Nam-Hee
    • Korean System Dynamics Review
    • /
    • v.17 no.1
    • /
    • pp.107-134
    • /
    • 2016
  • Accelerated ageing with low fertility is one of the most critical problems in Korea. Because of ageing via low fertility, Korea will face a serious demographic cliff. This research primarily focus on the analyzing the dynamics of the marginal ageing state and decreasing population especially in Eup and Myeon region. This study based on the system dynamics approaches for finding causal loop structure of marginal ageing and critical mass of population disappearing. The results of this study are summarized as follows. First, demographic marginalization trends have already begun in the Eups and Myons of Gun. Second, marginal aging speed in Eup/Myeon areas is causing an population disappearing in the near future. Third, critical mass of population disappearing will begin when the rate of marginal aging is exceed 82% after 2023.

A Systems Thinking Study on the Program Management of Community Child Centers in Daegu Metropolitan Area (대구지역의 지역아동센터 프로그램 운영에 관한 시스템사고적 고찰)

  • Cho, Sungsook
    • Korean System Dynamics Review
    • /
    • v.17 no.2
    • /
    • pp.57-79
    • /
    • 2016
  • This study aims to examine the dynamics of the variables related to the program management of Community Child Centers in Daegu metropolitan area and further search for the measures to activate its development based on the Systems Thinking. For these purposes, the study deals with the followings. Firstly, it overviews the legal bases of the Community Child Centers and its present condition and further reviews the relevant studies. Secondly, it summarizes its methodologies. Thirdly, based on the results of the questionnaire and interviews, it draws the major variables to understand its program management and analyzes its causal feedback structure and dynamics. Lastly, it concludes with the measures to activate its program management. This study is expected to make a useful resource to dynamically understand the program management issue of the Community Child Centers in Korea.

Development of a System Dynamics Model for Growth of School-Age Children (시스템 다이내믹스를 이용한 학령기 아동의 성장모형)

  • Yi, Young-Hee;Hong, Kyung-Ja
    • Korean System Dynamics Review
    • /
    • v.6 no.1
    • /
    • pp.177-192
    • /
    • 2005
  • A system dynamics model is developed to investigate policies for the school-age child weights and heights. The model is based upon the system dynamic model of Soonhee lee(2003), the purpose of which was policy analysis for obese control of adult people. Although the purpose and target people are different, the main structure can be applied to in the same way. Besides the carbohydrate, protein, and fat material, the new model covers hormone and heights with new input mechanisms for foods and activities. The simulation results matches well with the average school-age children in Korea with the average inputs data (foods and activities). The model can be used for various purposes such as policy analyses, care plan for obese children, etc.

  • PDF

Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

  • Cai, LiJun;Zhang, Jing;Chen, Lei;He, TingQin
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.12 no.5
    • /
    • pp.2142-2161
    • /
    • 2018
  • Distance dynamics model is an excellent model for uncovering the community structure of a complex network. However, the model has poor robustness. To improve the robustness, we design an enhanced distance dynamics model based on Ego-Leader and propose a corresponding community detection algorithm, called E-Attractor. The main contributions of E-Attractor are as follows. First, to get rid of sensitive parameter ${\lambda}$, Ego-Leader is introduced into the distance dynamics model to determine the influence of an exclusive neighbor on the distance. Second, based on top-k Ego-Leader, we design an enhanced distance dynamics model. In contrast to the traditional model, enhanced model has better robustness for all networks. Extensive experiments show that E-Attractor has good performance relative to several state-of-the-art algorithms.

Evaluation of Internal Structure and Morphology of Poly(benzyl ether) Dendrimers by Molecular Dynamics Simulations

  • Hong, Taewan;Kim, Hyung-Il
    • Macromolecular Research
    • /
    • v.12 no.2
    • /
    • pp.178-188
    • /
    • 2004
  • We performed molecular dynamics (MD) simulations at 300 K on a series of poly(benzyl ether) (PBE) dendrimers having a different core functionalities. We used the rotational isomeric state Metropolis Monte Carlo (RMMC) method to construct the initial configuration in a periodic boundary cell (PBC) before the MD simulations were undertaken. To elucidate the effects that the structural features have on the chain dimension, the overall internal structure, and the morphology, we monitored the radii of gyration, R$\sub$g/ and the conformational changes during the simulations. The PBE dendrimers in a glassy state adopted less-extended structures when compared with the conformations obtained from the RMMC calculations. We found that R$\sub$g/ of the PBE dendrimer depends on the molecular weight, M, according to the relation, R$\sub$g/∼M$\^$0.22/. The radial distributions of the dendrimers were developed identically in the PBC, irrespective of the core functionality. A gradual decrease in radial density resulted from the fact that the terminal branch ends are distributed all over the molecule, except for the core region.

Molecular dynamics study of ionic diffusion and the FLiNaK salt melt structure

  • A.Y. Galashev
    • Nuclear Engineering and Technology
    • /
    • v.55 no.4
    • /
    • pp.1324-1331
    • /
    • 2023
  • In the present work, we carried out a molecular dynamics study of the kinetic properties of the FLiNaK molten salt, as well as a detailed study of the structure of this salt melt. The high value of the self-diffusion coefficient of fluorine ions is due to the large number of Coulomb repulsions between the most numerous negative ions. The calculated values of shear viscosity are in good agreement with the experimental data, as well as with the reference data obtained on the basis of finding the most reliable data. The total and partial functions of the radial distribution are calculated. According to the statistical analysis, fluorine ions have the greatest numerical diversity in the environment of similar ions, and sodium ions with the lowest representation in FLiNaK, have the least such diversity. For the subsystem of fluorine ions, the rotational symmetry of the fifth order is the most pronounced. Some of the fluorine ions form linear chains consisting of three atoms, which are not formed for positive ions. The results of the work give an understanding of the behavior molten FLiNaK under operating conditions in a molten salt reactor and will find application in future studies of this molten salt.