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Abstract

Distance dynamics model is an excellent model for uncovering the community structure of a
complex network. However, the model has poor robustness. To improve the robustness, we
design an enhanced distance dynamics model based on Ego-Leader and propose a
corresponding community detection algorithm, called E-Attractor. The main contributions of
E-Attractor are as follows. First, to get rid of sensitive parameter A, Ego-Leader is introduced
into the distance dynamics model to determine the influence of an exclusive neighbor on the
distance. Second, based on top-k Ego-Leader, we design an enhanced distance dynamics
model. In contrast to the traditional model, enhanced model has better robustness for all
networks. Extensive experiments show that E-Attractor has good performance relative to
several state-of-the-art algorithms.
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1. Introduction

Most real-world systems, such as social networks and electric networks, can be modeled as

networks and have some common features (also called community structure [1]). For example,
these networks are scale-free, modular, small-world, and so on. Generally, a community is a
set of nodes that is densely connected internally and loosely connected externally. Community
detection is used to find the community structure of a network and to help us analyze the
organizational structure, functional behavior, and evolution dynamics of the network.
Recently, community detection techniques have been widely used in various domains, such as
epidemiology networks, biological networks, metabolic networks, ecological webs, and
particularly online social networks [2].

Over the years, many community detection algorithms have been developed to reveal the
hidden community structure of networks, including modularity optimization algorithms,
spectral clustering algorithms, graph partition algorithms, and dynamics algorithms [3]. Under
the category of dynamics algorithms, there is a sub-category based on the synchronization
phenomena; we call them synchronization-inspired dynamics algorithms. In 2010, inspired by
the nature of synchronization phenomena, Béhm C [4] proposed a natural clustering method
for any given dataset based on exploiting the synchronization dynamics. To adapt to various
different datasets (text data or high-dimensional data), Bohm C selected and extended the
Kuramoto Model [5-6] to simulate the synchronization dynamics. The Kuramoto Model can
work well in various application environments (text data or high-dimensional data), especially
in the case of a scattered dataset, where any two objects have no obvious association. Based on
the clustering algorithm, many extended methods are proposed for different domains, such as
high-dimensional data [5], data streams [6], graph clustering, anomaly mining [7], image
segmentation [8], and biological information [9].

In the context of community detection, the dataset is a network graph. In the graph, edges
indicate the obvious associations between data objects, and the properties of data objects are
often ignored. In 2015, driven by network topology, Shao [10] addressed community detection
by developing distance dynamics model to simulate the synchronization dynamics from a new
view, namely, the edge, instead of traditional Kuramoto Model. In the new model, each edge
of a network is associated with an initial distance. As time evolves, driven by network
topology, each distance changes gradually. Finally, those objects with high similarity will
synchronize together, and dissimilar objects will be far away from each other. The new model
has several attractive benefits, such as “intuitive community detection,” *“small community
detection,” and “anomaly detection.” These benefits are very important and desirable in
community detection. The model is described in more detail in Section 2.

A drawback of the distance dynamics model is that it is sensitive to the value of cohesion
parameter A, and deriving the best value of A is difficult. The cohesion parameter A is
introduced as a threshold determining the negative or positive influence of an exclusive
neighbor on the distance. With a high value of A, nodes are more likely to be mutually
exclusive during the synchronization dynamics process, and the distance dynamics model
yields more communities. Conversely, when A is small, nodes are more likely to synchronize
together, and the model produces larger communities. By modulating cohesion parameter A,
the distance dynamics model allows analyzing the community structure from coarse to fine.
However, different networks are very sensitive to parameter A. There are three main
difficulties associated with the importance of parameter A.

« Each network has its own density and properties, so each network needs a different value

of A. Although the region [0.4, 0.6] is recommended for the cohesion parameter A in the
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model, this range is only suitable for a small number of networks and does not work well
in most networks.

e There is no powerful or robust method to obtain the best value of A for different networks.
To achieve a desired or perfect partitioning requires a long period of constant adjustment
of A with observation of the resulting community structure. Moreover, class labels
(ground truth) are unknown for most real-world networks, making obtaining the best
value of A for a network very difficult.

e Minor changes to parameter A may cause great differences in the resulting community
structure.

1.1 Basic ldea

The motivation of this paper is to further optimize the robustness of the distance dynamics
model. Toward that aim, we introduce Ego-Leader to replace the sensitive cohesion parameter
A in the distance dynamics model.
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Fig. 1. lHlustration of Ego-Leader.

By carefully analyzing synchronization process phenomena, we find that there are some
leaders hiding in the neighbor set of each node. For each node, these leaders determine the
movement of the node in the synchronization process. The leaders of a node remain constant
throughout the synchronization process. Moreover, these leaders are local rather than global.
That is, two nearby nodes may have completely different leaders. In this paper, we call these
node leaders the Ego-Leaders. We introduce Ego-Leader to replace the cohesion parameter A
in the distance dynamics model to determine whether two indirectly connected nodes are
similar and to estimate the negative or positive influence of one exclusive neighbor on the
distance. When two indirectly connected nodes have common objects in their respective
Ego-Leaders, we assume these two nodes are similar, and these common leaders will attract
the two nodes to move towards themselves in the synchronization dynamics process. Thus, a
node as the exclusive neighbor of another node will yield a positive influence on the distance,
reducing the value of the distance. Conversely, when two indirectly connected nodes do not
have common objects in an Ego-Leader, these two nodes are dissimilar, and the two nodes will
keep away from each other in the synchronization process. Thus, a node as the exclusive
neighbor of another node will yield a negative influence on the distance, increasing the value
of the distance. By using the Ego-Leader, we can overcome the imperfections of the distance
dynamics model caused by the cohesion parameter A. There are two reasons for this
improvement. First, Ego-leader is easily obtained. Second, Ego-Leader is local and common
to all networks.
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To describe the Ego-Leader more clearly, let us take a simple example. In Fig. 1, node 1
and node 4 are two indirectly connected nodes, node 4 is an exclusive neighbor for edge e(1,5),
and we call node 1 and node 4 an exclusive neighbor pair, denoted en(1,4). Similarly, node 3
and node 5 are two indirectly connected nodes, node 3 is an exclusive neighbor for edge e(4,5),
and we call node 3 and node 5 the exclusive neighbor pair en(3,5). For the pair en(1,4) in Fig.
1(a), we find the Ego-Leader of node 1 and node 4 from the neighbor set (the gray dashed
circle) of edge e(1,5). The Ego-Leader of node 1 encompasses node 10 and node 6 (two red
nodes), while the Ego-Leader of node 4 is only node 6. Because node 6 is common to the
Ego-Leaders of node 1 and node 4, we think node 1 is similar to node 4, and common leader
node 6 will attract node 1 and node 4 to move towards itself in the synchronization process.
For the edge e(1,5), exclusive neighbor 4 will produce a positive influence and reduce the
distance of e(1,5). For contrast, let us look at the exclusive neighbor pair en(3,5) in Fig. 1(b).
The Ego-Leader of node 3 is node 2, and the Ego-Leader of node 5 comprises node 1 and node
6. Because there is not a common object in the Ego-Leaders of node 3 and node 5, we consider
node 3 dissimilar to node 5, and node 3 keeps away from node 5 in the synchronization process.
For the edge e(4,5), exclusive neighbor node 3 will yield a negative influence, increasing the
distance of e(4,5).

1.2 Key contributions

Some significant contributions of this paper are as follows:

o A top-k level Ego-Leader discovery algorithm is developed to find the Ego-Leader of each
node from the network topology.

« An enhanced distance dynamics model is designed, where Ego-Leader is used to replace the
traditional cohesion parameter A. Based on the enhanced model, a corresponding community
detection algorithm is described, called E-Attractor.

The remainder of this paper is organized as follows. The traditional distance dynamics model
is described in Section 2. Section 3 shows the Ego-Leader. Section 4 demonstrates our enhanced
model and corresponding community detection algorithm (E-Attractor). Extensive experimental
evaluation is presented in Section 5. Section 6 concludes this paper.

2. Traditional Distance Dynamics Model

Distance dynamics model is a typical dynamics model for community detection proposed in
2015 [10]. The process of the model is as follows: to start, each edge is associated with an
initial distance; as time evolves, three different interaction models are used to expand or shrink
each distance gradually; finally, all distances converge and the community structure of the
network is naturally formed by removing the edges with the long distance value. In the
following, we introduce the background and three interaction patterns of the distance
dynamics model in detail.

2.1 Related Background

Definition 1 (undirected graph). Let G=(V,E,W) be an undirected graph, where V is the
node set, E is the edge set, and W is the corresponding weight set of all edges. Each edge
e(u,v)eE implies a communication connection between node u and v. w(u,v) is the weight of
corresponding edge e(u,v).

Definition 2 (neighbors of node u). Given an undirected graph G=(V,E,W), the neighbors
of node u N(u) is a node set that consists of node u and its connected nodes and is defined as
follows:
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N(u)={veV[{uv}<E} U {u} (1)

Definition 3 (Jaccard distance). Given an undirected graph G=(V,E,W), the Jaccard
distance [20] between node u and node v is defined as:

N(u)IN (v
N(U)UN ()

In the above equation, |*| indicates the size of set *, and N(u) comprises the neighbors of
node u. The Jaccard distance measures the similarity of the neighbor sets of node u and node v.
The more common neighbors the two nodes have, the greater similarity the two nodes have
and the less the value of the Jaccard distance will be, and vice versa.

For the weighted undirected graph, because each edge has a different weight, the
computational model of the Jaccard distance is different. The new computational model is
extended as:

(W(u,x)+w(v,x))
d u,v -1 — xeN(u)NN(v) (3)
(u.v) T

{x,y}eE;x,yeN(u)UN(v)

2.2 Interaction Model

In the traditional distance dynamics model, three interaction patterns are proposed to simulate
the distance dynamics. Fig. 2 shows the three interaction patterns.
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Fig. 2. Three distinct interaction patterns.

Pattern 1: Influence from directly linked nodes. The distance d(u,v) between node u and
node v is obviously influenced by two directly linked nodes u and v. Through mutual
interactions, one node attracts the other to move towards it, thus the distance d(u,v) decreases
(see Fig. 2 (b)). Therefore, to characterize the change in the distance d(u, v), DI is defined to
represent the influence from two directly linked nodes, as follows:

fl-d(uv)) f(l—d(“’v))J 4)

deg (u) deg (v)

In pattern DI, deg(u) indicates the degree of node u, and f(-) is a coupling function, where
sin(-) is the default. The term 1-d(u,v) implies the similarity of the inherent structure or
properties of node u and v. The term 1/deg(u) is a normalized factor that is used to account for
the different influences between linked nodes with diverse degrees.

Pattern 2: Influence from common neighbors. The distance d(u,v) is influenced by
common neighbors CN=(N(u)-x«)N(N(v)-v) of nodes u and v. Each common neighbor is a node
connected to both node u and node v. In the dynamic interaction process, since each common
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neighbor communicates with nodes u and v, the common neighbor will gradually attract two
nodes to move towards itself, and thus lead to t decrease of the distance d(u, v) (see Fig. 2 (c)).
The second interaction pattern is called ClI and is defined as follows.

c--y f(l—d(x,u))~(1—d(x,v))] _y [ f(1-d(x,v))-(1-d(x,u))

= deg (u) deg (V) ®)

In pattern CI, for each common neighbor x, the two terms (1-d(x,u)) and (1-d(x,v)) are used
to further measure the difference in influence between pattern DI and pattern CI.

Pattern 3: Influence from exclusive neighbors. The influence of exclusive neighbors is
the third interaction pattern. Each exclusive neighbor in EN(u)=N(u)-(Nw)NN(v)) or
EN(V)=N(Vv)- (N(u)NN(v)) connects to only one of nodes u or v, (see Fig. 2 (d)). And each
exclusive neighbor and the indirectly connected end node compose an exclusive neighbor pair.
In the dynamic interaction process, each exclusive neighbor will attract only one node (node u
or v) to move towards itself. However, we do not know whether another node is close to the
exclusive neighbor. To determine the positive or negative influence of an exclusive neighbor
on the distance, a cohesion parameter A is introduced to measure the similarity of two nodes in
an exclusive neighbor pair and is defined as follows.

1-d(x,v 1-d(x,v))>1
iy [190) (e
(1-d(x,v))-2 otherwise
In the above equation, p(x,u) indicates the positive or negative influence from exclusive

neighbors EN(u) on the distance d(u, v). The third interaction pattern, El, based on the
cohesion parameter 2, is defined as:

_ f(1-d(xu))-p(x,u) ~ f(l—d(y,V))p(y,v)]
- Xe;:(u){ deg(u) J ye;‘(v){ deg (v) (7)

Finally, considering the three interaction patterns together, the dynamics of distance d(u,v)
between nodes u and v over time is governed by:
d(u,v,t+1)=d(u,v,t)+ DI (t)+CI (t)+EI(t) (8)
where d(u,v,t+1) is the new distance at time step t+1. DI(t), CI(t) and EI(t) are the three
different influences from two directly linked nodes, common neighbors, and exclusive
neighbors, respectively.

xeCN

(6)

3. Ego-Leader

In this paper, for any node, Ego-Leader is the set of nodes with the greatest power in the node’s
neighbor set. To find the Ego-Leader of a node, we must select a way to measure the capacity
of each neighbor. Generally, degree centrality, betweenness centrality, closeness centrality,
subgraph centrality, and eigenvector centrality are five classical measurements of centrality
[11]. However, these five metrics are global metrics. They represent the capacity of a node in
the whole network. In this paper, Ego-Leader is a local metric and applies only to one node
rather than the whole network. That is, the scope of activity of Ego-Leader is the neighbor set
of a node. Therefore, traditional metrics of measuring node capacity cannot work for
determining the Ego-Leader. We need to find a new, local metric of measuring node capacity.

3.1 Asymmetric edge clustering coefficient

In synchronization dynamics, an Ego-Leader will attract some nodes to synchronize with itself.
That is, for any node, its Ego-Leader has a greater probability of clustering together with the
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node (some nodes synchronize together). Hence, we consider the clustering relationship to be
a good metric for Ego-Leader. In this paper, the asymmetric edge clustering coefficient is
proposed as the metric to measure the capacity of a neighbor. In the following, we describe the
concept of an edge clustering coefficient, then present the asymmetric edge clustering
coefficient.

The notion of edge clustering coefficient originates in the research on community discovery
in complex networks [11]. It characterizes the closeness between the two end nodes of an edge
and the other nodes around them. The edges with higher clustering coefficients tend to hide in
the community structure of the network. This view has been proved in many works [12]. The
edge clustering coefficient is a measure that can both evaluate the importance of edges in the
network and describe how close an edge’s two end nodes are.

Definition 4 (Edge clustering coefficient): for an edge e(u,v) connecting node u and node v,
we observe how many other nodes adjoin both u and v. The edge clustering coefficient of e(u,v)
can be defined as

ECC(u,v) = — Lo 9)
min(deg(u)—1,deg(v)-1)

where z,,, denotes the actual number of triangles in the network topology that include edge
e(u,v), deg(u) and deg(v) are degrees of node u and node v, respectively, and min(deg(u)-1,
deg(v)-1) is the maximum number of triangles containing edge e(u,v). When either end node (u
or v) is a leaf node, the edge clustering coefficient defaults to 0.

The traditional edge clustering coefficient is a symmetric local metric, ECC(u,v)=ECC(v,u),
but Ego-Leader is asymmetric. That is, node v may be in the Ego-Leader of node u when node
u is not in the Ego-Leader of node v. Therefore, the traditional edge clustering coefficient
cannot fully address the asymmetry of Ego-Leader. Therefore, we revise the traditional edge
clustering coefficient and propose an asymmetric edge clustering coefficient.

Definition 5 (Asymmetric edge clustering coefficient): for an edge e(u,v) connecting
node u and node v, the asymmetric edge clustering coefficient can be defined as.

Zu,v
AECC(u,v) = deg(v)—1 (10)

The asymmetric edge clustering coefficient indicates the influence of node u on node v and
the degree of overlap in the two nodes’ neighbor sets. The higher AECC(u,v) is, the greater the
influence of node u on node v is. To illustrate AECC more clearly, let us take a simple example.
In Fig. 3, we try to calculate the AECC of the thick green edge €(6,0). n6 and n0 are the two
end nodes of edge e(6,0), and the degrees of these two nodes are 4 and 6, respectively. From
the figure, we can see that there are only two triangles (Agog and Agg7) including the edge e(6,0).
Therefore, AECC(6,0)=2/(6-1)=0.4, and AECC(0,6)=2/(4-1)=0.67. That is, AECC(6,0) is not
equal to AECC(0,6), proving the asymmetric edge clustering coefficient is an asymmetric
local metric and completely meets the requirements of Ego-Leader.

Fig. 3. Example of 10-node and 23-edge graph.
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3.2 Ego-Leader and its features

In summary, we use the asymmetric edge clustering coefficient AECC to find the Ego-Leader
of any node in the network. So far, we have a clear understanding of the Ego-Leader of a node.
The Ego-Leader of a node consists of multiple neighbors having the greatest AECC value. In
addition, the number of nodes in a node’s Ego-Leader is never more than the number of
neighbors of the node. Hence, the Ego-Leader has the following important features.

(1) Ego-Leader is asymmetric.

This feature is very important and implies the intrinsic Leader-Follower relationship. The
importance of a Leader to its Followers is obviously greater than the importance of any
Follower to its Leader. Moreover, the proof for this feature is self-evident.

(2) Ego-Leader is local and static.

Proof: as we have shown, the Ego-Leader of a node comprises the nodes of greatest power
in its neighbor set. That is, any Ego-Leader only works for one node, and its scope of activity is
the neighbor set of the node. Therefore, the Ego-Leader is a local metric and strongly
dependent on the network topology. Because the network topology is static, the Ego-Leader of
a node is also static and does not incur any change.

In addition, this feature has been proved in many works [15-16].

(3) The centrality of Ego-Leader in its group is positively related to the objective
performance of that leader’s group.

This feature indicates that the greater the power of a group leader is, the greater the
probability that all members of this group cluster together. This feature has also been proved in
previous work [17].

3.3 Finding top-k level Ego-Leader

In this paper, the goal of introducing our Ego-Leader is to replace the traditional cohesion
parameter A in determining the influence of an exclusive neighbor on distance. However, in
the traditional model, cohesion parameter A has a useful feature. That is, by modulating the
cohesion parameter A, the distance dynamics model allows analyzing the network’s
community structure from coarse to fine. With a higher value of A, the distance dynamics
model yields more communities, while larger communities are produced with a lower value of
L. To retain this feature, we use parameter k to dynamically adjust the number of objects in the
Ego-Leader of a node. Hence, we select the top-k level objects having greatest power from the
neighbor set to form the Ego-Leader of a node. When two neighbors have the same influence
(AECC) on a node, those two neighbors belong to the same level.

Neighbor Set of
node 6

Fig. 4. Top-2 level Ego-Leader.
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To describe the top-k level Ego-Leader concept more clearly, let us take a simple example.
In Fig. 4, we try to find the top-2 level Ego-Leader for green node 6. We search the neighbor
set of node 6, as shown in the red dashed circle of Fig. 4. From the neighbor set, we find node
1 has the highest AECC value because there are 4 triangles (Aiss, Aiss, A176, and Aggg)
containing edge e(1,6). Thus, the dark red node, 1, is the level-1 Ego-Leader of node 6.
Likewise, two light red nodes 5 and 7 have the second highest AECC value,
AECC(5,6)=AECC(7,6), because there are 3 triangles between node 5 (node 7) and node 6,
corresponding to Asig, Asas, As7s (OI' A716, A7s6, A736). ThUS, the ||ght red node 5 and node 7
comprise the level-2 Ego-Leader of node 6. That is, for node 6, the top-2 level Ego-Leader
includes node 1, node 5, and node 7.

By modulating k, we can easily adjust the scale of node Ego-Leaders, and this modified
distance dynamics model also allows analyzing network’s community structure from coarse to
fine. The higher the value of k is, the bigger the scale of Ego-Leader is, increasing the
probability that an exclusive neighbor yields positive influence and simultaneously increasing
the size of the community found by the distance dynamics model. Conversely, the model
produces more communities with a lower value of k. In contrast to the traditional cohesion
parameter A, we find the top-k Ego-Leader has the following advantages.

« It makes the distance dynamics model more robust. Ego-Leader is local and common for
all networks, so it is not sensitive to different networks. Moreover, Ego-Leader is strongly
dependent on network topology, so it is more suitable than cohesion parameter A for the
distance dynamics model and makes the model more robust.

« It is easier to obtain the best value of k. To get a perfect network community structure, we
need to get the best value of parameter k. For that, we only need to adjust the value of k
several times, generally fewer than 6, from top-3 to top-8. By contrast, to get the best value
of cohesion parameter A for different networks requires a long period of constant, manual
adjustment of A.

e It is easier to understand and accept. In contrast to traditional cohesion parameter A,
Ego-Leader is easier to understand and accept in the distance dynamics model because the
synchronization dynamics process in the distance dynamics model has been regarded as
the Leader-Follower process in previous research [17-18].

o It is fast, and no extra time is required. Because the asymmetric edge clustering
coefficient is a local metric, the calculation speed of Ego-Leaders is very fast. Moreover,
the calculation of Ego-Leaders can be merged into the initial distance calculation phase of
the distance dynamics model, so no extra time is required for calculating the nodes’
Ego-Leaders.

In summary, the process of finding top-k level Ego-Leaders is very simple. First, each edge
of the network is scanned sequentially. For each node, we build a queue to sort the neighbors
according to their capacity. For edge e(u,v), the asymmetric edge clustering coefficients
AECC(u,v) and AECC(v,u) are calculated using Eqg.10 to measure the influence of node u (or
node v) to node v (or node u). According to the value of AECC(u,v) (or AECC(v,u)), neighbor
u (or v) is stored into the queue of node v (or u) in descending order. Second, we judge
whether the AECCs of all neighbors of node u (node v) have been calculated. When the AECC
has been calculated for all neighbors of node u (or node v), the top-k level neighbors are
chosen from the queue of node u (or node V) as its Ego-Leader. When the value of k is greater
than the degree of node u (or node v), all neighbors are selected to form the Ego-Leader. Third,
when all edges of the network have been scanned, the process is over.
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3.4 Simplify validation

To validate the effectiveness of Ego-Leader, we select two classic networks to evaluate
whether Ego-Leader correctly determines the influence of an exclusive neighbor on distance,
thus replacing traditional cohesion parameter A. Two networks, the Zachary’s karate club and
Dolphins networks, are publicly available from the UCI network data repository
(https://network data.ics.uci.edu/index.php). The process of validation is as follows. We
randomly sample 30 indirectly connected node pairs from the Zachary’s karate club network
and 100 indirectly connected node pairs from the Dolphins network. We label each indirectly
connected node pair as an exclusive neighbor pair because one node must be the exclusive
neighbor of another node in the pair. We use top-2 Ego-Leader and cohesion parameter A
(A=0.5) as two distinct ways to determine whether the two nodes of an exclusive neighbor pair
are similar. If two nodes in the exclusive neighbor pair are similar, the exclusive node will
produce a positive influence on distance. If the nodes are not similar, the exclusive node will
yield a negative influence on the distance.

Table 1. Validation of Ego-Leader on karate club network.

. Ego-Leader Cohesion parameter A

Exclusive

neighbor pair | first node | second node similar (Jﬁccard A similar

istance

(2330) [29, 27] [8, 32] False 0.77 0.5 False
(2315) [29, 27] [32] False 0.71 0.5 False
(269) [29] [2] False 0.8 0.5 False
(713) [3,1,2] [3,1,2] True 0.42 0.5 True
(8<12) [30,32,2] | [3] False 0.88 0.5 False
(106) [4, 5] [5, 16, 4] True 0.5 0.5 True
(107) [4,5] [3,1,2] False 0.88 0.5 False
(1217) [3] [1] False 0.8 0.5 False
(13e7) [3,1,2] [3,1, 2] True 0.43 0.5 True
(1721) [0] [0] True 0.5 0.5 True

The first network is the well-known Zachary’s karate club network, which consists of 34
vertices and 78 undirected edges. Each node represents a member of the club, and each edge
represents a tie between two members. For convenience, Table 1 shows the results of only 10
exclusive neighbor pairs. From the table, we easily observe that Ego-Leader produces nearly
the same choices as cohesion parameter A.

Table 2. Validation of Ego-Leader on Dolphins network.

. Ego-Leader Cohesion parameter A

Exclusive 5 3 3

neighbor pair | first node secon similar accar A similar
node distance

(3344) [14,37,16] | [38, 20, 2] False 0.86 0.5 False

(23e1) [51, 45] [27, 26, 54] | False 0.92 0.5 False

(6>5)) [13,57,9] [9,13,57] | True 0.5 0.5 True

(4020) [14,0, 37] [28, 16, 44] | False 0.94 0.5 False



https://network/

2152

Cai et al.: Enhanced Distance Dynamics Model for Community Detection via Ego-Leader

(4126) [54, 13,57] | [27, 25] False 0.89 0.5 False
(157) [27, 26, 54] | [13,9, 6] False 0.81 0.5 False
(2e30) [10, 42, 61] | [47,19,28] | False 0.9 0.5 False
(430) [33, 38] [10, 47, 40] | False 0.93 0.5 False
(15<51) [24, 18] [18,4,11] | True 0.43 0.5 True
(10520) [42,0, 2] [28, 16, 44] | False 0.93 0.5 False

The second network is the Dolphins network. It is an undirected social network based on the
frequent associations between 63 dolphins in a community living off Doubtful Sound (New
Zealand). Similar to the karate club network, Table 2 shows only the results of 10 exclusive
neighbor pairs. From the table, we can draw the same conclusion: Ego-Leader produces the
same or similar results as cohesion parameter A.

Based on the above evaluations, we believe Ego-Leader can be introduced into the distance
dynamics model and replace traditional cohesion parameter A to determine the influence of an
exclusive neighbor on distance.

4. E-Attractor: Enhanced Distance Dynamics Model for Community
Detection via Ego-Leader

In this section, we describe an enhanced distance dynamics model based on Ego-Leader. Then,
based on the enhanced model, we present a corresponding community detection algorithm
called E-Attractor.

4.1 Enhanced distance dynamics model

In the traditional distance dynamics model, three interaction patterns (DI, CI, and EI) are used
to simulate the distance dynamics. The details are provided in Section 2. In contrast to the
traditional model, our enhanced distance dynamics model introduces Ego-Leader to replace
the cohesion parameter A. More specifically, the top-k Ego-Leader of each node is used to
determine whether two indirectly connected nodes are similar and to decide the influence of an
exclusive neighbor on distance. Because the traditional DI and CI patterns do not use cohesion
parameter A, these two patterns are unchanged in our enhanced model. We only improve the EI
pattern via Ego-Leader.

New Pattern 3: Influence from exclusive neighbors. The influence from the exclusive
neighbors is the third interaction pattern. In the exclusive neighbor sets EN(u)=N(u)- (N(u)
NN(v)) and EN(V)=N(v)- (N(u) NN(v)), each node only connects to one end node, u or v, of
edge e(u,v) (please see Fig.2 (d)). Each exclusive neighbor and corresponding indirectly
connected end node form an exclusive neighbor pair. In the interaction process, each exclusive
neighbor will only attract the node connected with it (node u or node v). However, we do not
know whether another node (indirectly connected node) will be close to the exclusive
neighbor. To determine the positive or negative influence of an exclusive neighbor on distance
d(u,v), Ego-Leader is used and defined as:

1-d(x, E EgoL, >0
(x| (8 049) [EaoL, (0N EgeL, (1)
~(1-d(x,v)) otherwise
In the above equation, EgoL(x) is the top-k Ego-Leader of node x. The function o(x,u) not

only indicates the direction of influence (positive or negative) of exclusive neighbor x on
distance but also shows the strength of this influence. Hence, the new third interaction pattern,

(11)
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NEI, is defined as:
f(l-d(x,u))- , f(1-d(y,v)) ,
NEI = — z ( (X U)) O-(X U) _ Z ( (y V)) O-(y V) (12)
= deg (u) =) deg (v)
Finally, considering the three interaction patterns together, the dynamics of distance d(u,v)
between nodes u and v over time is governed by:
d(u,v,t+1)=d(u,v,t)+ DI (t)+CI (t)+NEI(t) (13)
where d(u,v,t+1) is the new distance at time step t+1. DI(t), CI(t) and NEI(t) indicate three

different influences from two directly linked nodes, common neighbors, and exclusive
neighbors, respectively.

4.2 E-Attractor algorithm

In this section, we give a comprehensive description of the E-Attractor algorithm. The
E-Attractor process is very simple, consisting mainly of the following three steps.

1. At the start time (t=0), without any interaction, each edge is associated with an initial
distance using the Jaccard-distance function (Eq.2 or Eq.3). At the same time, the two
asymmetric edge clustering coefficients of each edge are calculated and stored into the
queues of their respective end nodes. When all neighbors of an end node have been
calculated, then the top-k level Ego-Leaders are chosen to form the Ego-Leader set. More
detail is provided in Section 3.

2. The dynamic interaction process is initiated. As time evolves, driven by the network
topology, each distance changes gradually under the influence of three different
interaction patterns (DI, CI, and NEI). In particular, the nodes with higher similarity
synchronize faster, and the distances between these nodes decrease faster. At the same
time, the nodes with higher dissimilarity separate faster, and the distances between these
nodes increase faster. After multiple time steps, all distances converge, either to 0 or 1,
ending the dynamic interaction process.

3. After the dynamic interaction process, the community structure of the network is naturally
detected by removing all edges with a distance value of 1.

4.3 Time complexity

The time complexity of E-Attractor is two-fold. First, each edge is associated with an initial
distance, and the Ego-Leader of each node is calculated. Therefore, the time complexity is
O(|E[), where |E| is the number of edges. Second, a dynamic interaction process is executed
with T time steps. Thus, time complexity of this process is O(T*U*|E[), where U is the average
number of exclusive neighbors of two linked nodes. In total, the time complexity of
E-Attractor is O(|[E|+T*U*|E|).

5. Experimental Evaluation

5.1 Evaluation Setup

Comparison Algorithms. To evaluate the performance of the E-Attractor algorithm, we
select five representative community detection algorithms as competitors. All comparison
algorithms are listed in Table 3, where the InfoMap, FastGreedy and Louvain algorithms are
considered to be the best algorithms for disjoint community detection [3,21], the LPA
algorithm has a high speed, and the Attractor algorithm is a native algorithm built on the
distance dynamics model. For all community detection algorithms, recommended parameter
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defaults are used to get the best experimental results.

Table 3. Comparison Algorithms.

Algorithm Full Name Implement
InfoMap [19] Maps of random walks on complex networks reveal community Python
structure.
FastGreedy [13] Finding community structure in very large networks. Python
LPA [24] Label propagation through linear neighborhoods. Python
Louvain [14] Fast unfolding of communities in large networks. Python
Attractor [10] Community Detection based on Distance Dynamics. Python
E-Attractor E_nhanced distance dynamics model for community detection Python
via Ego-Leader.

Evaluation metrics. To extensively compare different community detection algorithms
with respect to effectiveness, we select two widely used metrics to evaluate the cluster quality.
(1) The first metric is Normalized Mutual Information (NMI) [23], which is defined in the
context of classical clustering to compare two different partitions of one dataset by measuring
how much information they have in common. (2) The second metric is the popular Adjusted
Rand index [22]. It calculates the total number of pairs that belong to the same cluster, or to
different clusters, comparing expected clusters and clustering results. All metrics scale
between 0 and 1 for a random or a perfect clustering result, respectively.

Experimental Platform. As the experimental platform, we rented a high-performance
server (IBM x3650 m4) from National Super Computing Center of Changsha, located in
Hunan province, China. The server comprises one CPU with 8 cores (Intel Xeon Processor
E5-2603) and 16GB main memory. All algorithms are run on the high-performance server
using the Windows server 2012 operating system. The E-Attractor and Attractor algorithm are
implemented in Python. For the other four algorithms, we have downloaded the Python
implementations from the official websites of the corresponding authors.

5.2 Sensitivity of parameter k

The first objective of experimental evaluation is to observe and validate the sensitivity of
parameter k in the top-k Ego-Leader. Parameter k is defined to determine the scale of the
nodes’ Ego-Leaders and, further, to decide the direction of the influence of an exclusive
neighbor on the distance: positive influence or negative influence. Generally, when parameter
k has higher value, each node has more members in its Ego-Leader, an exclusive neighbor has
a larger probability of exerting a positive influence, and the E-Attractor algorithm yields
bigger communities. Conversely, with lower k, each node has fewer Ego-Leader members, an
exclusive neighbor is more likely to exert a negative influence, and E-Attractor yields more
communities. By modulating parameter k, E-Attractor allows analyzing network community
structure from coarse to fine. Moreover, parameter k is robust and easy to tune. To evaluate the
sensitivity of parameter k, we adopt the Jazz network as the experimental dataset and observe
the change in community structure when modifying the value of k gradually.
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