• Title/Summary/Keyword: Structure Holes

Search Result 410, Processing Time 0.026 seconds

The appearance change and heat·moisture transfer properties of knitted fabric by yarn shrinkage (원사의 수축에 따른 다공성 편성물의 형태변화와 열·수분 전달특성)

  • Sang, Jeong-Seon;Park, Juhyun;Lee, Mee-Sik;Oh, Kyung Wha
    • The Research Journal of the Costume Culture
    • /
    • v.25 no.6
    • /
    • pp.880-892
    • /
    • 2017
  • In this study, the appearance change and the heat moisture transfer properties of knitted fabric by yarn shrinkage were examined to obtain useful data on the development of thermo-sensitive functional materials. Eleven types of knitted fabric were knitted using highly bulky acrylic-blended yarn. After shrinking the specimens using dry heat treatment, the appearance change and thickness were measured. An HEC simulator was adopted for measuring the heat moisture transfer properties of specimens by yarn shrinkage. When holes were arranged vertically in the mesh structure, the specimens with 2,500 and 5,000 holes showed high percent change of hole area, appearance, and thickness. When holes were diagonally arranged in the mesh structure, the percent change of hole area in the specimen with 1,250 holes was larger than the one with 2,500 holes. However, the dimensional stability of the specimen with 2,500 holes was better because of its smaller appearance and thickness change. In the tuck structure, the percent change of hole area in the specimen with 625 and 416 holes was relatively large compared with the appearance and thickness change. Furthermore, the hole size in the tuck structure was smaller than that in the mesh structure but the percent change of hole area was larger. Therefore, it was proved that the tuck structure is more suitable than the mesh structure for developing thermo-sensitive functional materials. Heat moisture transfer property test verified that the change of hole area by yarn shrinkage enabled obtaining the thermal effect due to the distinct temperature difference in the inner layer.

Design Approach of Q-band Precision Subminiature Coaxial Adaptor Using 3D Simulator and Its Experimental Results (3D 시뮬레이션과 측정값을 이용한 Q-band 정밀 초소형 동축 어댑터의 설계)

  • Wang, Cong;Qian, Cheng;Cho, Won-Yong;Kim, Nam-Young
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.11a
    • /
    • pp.387-388
    • /
    • 2008
  • This paper presents the design approach and test results of the Q-band precision subminiature coaxial adaptor based on transmission line theory using multi-step impedance and air-holes to increase its cutoff frequency. In order to increase the frequency performance, the adaptor is designed with hooked structure, fixing step, multi-air-holes, and outer conductor. The return loss increments due to the hooked structure and multi air-holes are minimized to 2 dB and 1.5 dB, respectively. A VSWR(Voltage Standing Wave Ratio) of <1.2 is obtained from DC to 40 GHz, while guaranteeing the durability of the adaptor from room-temperature$(25^{\circ}C)$ to $120^{\circ}C$.

  • PDF

Temperature Analysis of the Cylindrical Structure with Multi-Holes of HANARO Irradiation Test (하나로 조사시험용 다공 원통헝 구조물의 온도해석)

  • Choi Young-Jin;Kang Young-Hwan;Lee Young-Shin
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.405-412
    • /
    • 2004
  • During the irradiation tests of material and fuel rod, all components of the cylindrical structure with multiple holes act like heat sources due to high gamma heat and fission heat. The objective of this study is to formulate the general solution for the temperature distribution to estimate the thermal integrity of structure during irradiation tests. For the temperature distribution analysis, the two-dimensional heat conduction theory is used. The unmerical analysis is performed by the commercial finite element analysis code, ANSYS 6.1. If the cylindrical structure with hole number would not exceed three holes, the analysis results and finite element results are good agreement together. For the structure with four holes, the discrepancy between FE results and analysis results of the structural temperature distribution is increased.

The Study of Luminescence Efficiency by change of OLED's Hole Transport Layer

  • Lee, Jung-Ho
    • International Journal of Precision Engineering and Manufacturing
    • /
    • v.7 no.2
    • /
    • pp.52-55
    • /
    • 2006
  • The OLEDs(Organic Light-Emitting Diodes) structure organizes the bottom layer using glass, ITO(indium thin oxide), hole injection layer, hole transport layer, emitting material layer, electron transport layer, electron injection layer and cathode using metal. OLED has various advantages. OLEDs research has been divided into structural side and emitting material side. The amount of emitting light and luminescence efficiency has been improved by continuing effort for emitting material layer. The emitting light mechanism of OLEDs consists of electrons and holes injected from cathode and anode recombination in emitting material layer. The mobilities of injected electrons and holes are different. The mobility of holes is faster than that of electrons. In order to get high luminescence efficiency by recombine electrons and holes, the balance of their mobility must be set. The more complex thin film structure of OLED becomes, the more understanding about physical phenomenon in each interface is needed. This paper observed what the thickness change of hole transport layer has an affection through the below experiments. Moreover, this paper uses numerical analysis about carrier transport layer thickness change on the basis of these experimental results that agree with simulation results.

Stresses analyses of shell structure with large holes

  • Tian, Zongshu;Liu, Jinsong
    • Structural Engineering and Mechanics
    • /
    • v.6 no.8
    • /
    • pp.883-899
    • /
    • 1998
  • The strength, deformation and buckling of a large engineering structure consisting of four ellipsoidal shells, two cylindrical shells with stiffening ribs and large holes, one conical shell and three pairs of large flanges under external pressure, self weight and heat sinks have been analysed by using two kinds of five different finite elements - four assumed displacement finite elements (shell element with curved surfaces, axisymmetric conical shell element with variable thickness, three dimensional eccentric beam element, axisymmetric solid revolutionary element) and an assumed stress hybrid element (a 3-dimensional special element developed by authors). The compatibility between different elements is enforced. The strength analyses of the top cover and the main vessel are described in the paper.

The Flow Field Structures of In-lined Double Jet-in-Cross Flow at Low Velocity Ratio (낮은 속도비에서의 직렬 이중 제트-교차흐름의 유동 구조)

  • Lee, Ki-Young
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.18 no.4
    • /
    • pp.415-422
    • /
    • 2015
  • The flow field structures of dual jet-in-cross-flow were examined experimentally for in-lined perforated damage holes configuration using particle image velocimetry. Ensemble averaged in-plane velocity and vorticity data in the jet were determined to study the mean jet structure. Jets are formed by pressure differences between upper and lower airfoil surface. The flow structure of vicinity of the thru holes consist of a vortical structure that wrap around the jets like a horseshoe and develop further downstream through a pair of stream-wise vortices. The shape, size and location of the horseshoe vortex were found to be dependent on the angle of attack. In spite of the existence of battle damage holes, the effect on the control force was insignificant when the damage size was not large enough.

Semi-Rig, Introduction of Hole Verification Procedure (Semi- Rig, Hole Verification Procedure 소개)

  • Lee, Seung-hun;Lee, Seung-hun;Kang, Young-gu;Lee, Joon-hyuk
    • Special Issue of the Society of Naval Architects of Korea
    • /
    • 2017.10a
    • /
    • pp.32-37
    • /
    • 2017
  • Due to the nature of semi-submergible drilling rig, various equipments are arranged in a limited space, and therefore the many types of outfitting holes passing through the hull structure are densely arranged and that is required the detailed structural strength evaluation in terms of ULS and FLS by class or client. Particularly, semi-submergible drilling rig has a variety of global load which affects the structure strength around holes compared to general commercial ship, and its response of stress is also complicated, so it is difficult to carry out the prediction design of structural strength evaluation and reinforcement. In this regard, this paper presents a case study on the evaluation of structural strength for the various holes and large openings of semi-submergible drilling rig conducted by our company, as well as an established hole verification procedure.

  • PDF

Transient State Theory of Significant Liquid Structure (액체 구조의 천이상태 이론)

  • Pak, Hyung-Suk;Ahn, Woon-Sun;Chang, Sei-Hun
    • Journal of the Korean Chemical Society
    • /
    • v.10 no.1
    • /
    • pp.18-24
    • /
    • 1966
  • In formulating the Transient State Theory of Significant Liquid Structure it is assumed that there exist holes of molecular size in liquids and that the liquid state is partitioned in three states, namely, solid-like state, representing the molecules apart from holes; gas-like state, representing the molecules jumping into the holes; and the transient state, representing the molecules in a possible state of jumping into the holes by aquiring the strain energy due to the holes. It is found that the partition function derived according to the proposed theory can be applied to the liquids of argon, nitrogen, benzene, chloroform, and carbon disulfide with good accuracy.

  • PDF

Dynamic response of a base-isolated CRLSS with baffle

  • Cheng, Xuansheng;Liu, Bo;Cao, Liangliang;Yu, Dongpo;Feng, Huan
    • Structural Engineering and Mechanics
    • /
    • v.66 no.3
    • /
    • pp.411-421
    • /
    • 2018
  • Although a rubber isolation cushion can reduce the dynamic response of a structure itself, it has little influence on the height of a sloshing wave and even may induce magnification action. Vertical baffles are set into a base-isolated Concrete Rectangular Liquid Storage Structure (CRLSS), and baffles are opened as holes to increase the energy dissipation of the damping. Problems of liquid nonlinear motion caused by baffles are described using the Navier-Stokes equation, and the space model of CRLSS is established considering the Fluid-Solid Interaction (FSI) based on the Finite Element Method (FEM). The dynamic response of an isolated CRLSS with various baffles under an earthquake is analyzed, and the results are compared. The results show that when the baffle number is certain, the greater the number of holes in baffles, the worse the damping effects; when a single baffle with holes is set in juxtaposition and double baffles with holes are formed, although some of the dynamic response will slightly increase, the wallboard strain and the height of the sloshing wave evidently decrease. A configuration with fewer holes in the baffles and a greater number of baffles is more helpful to prevent the occurrence of two failure modes: wallboard leakage and excessive sloshing height.

Design of nonlinear photonic crystal fibers with ultra-flattened zero dispersion for supercontinuum generation

  • Kumar, Pranaw;Fiaboe, Kokou Firmin;Roy, Jibendu Sekhar
    • ETRI Journal
    • /
    • v.42 no.2
    • /
    • pp.282-291
    • /
    • 2020
  • The study reports on the design and performance of two air-filled and two partial ethanol-filled photonic crystal fiber (PCF) structures with a tetra core for supercontinuum generation. The PCFs are nonlinear with ultra-flattened zero dispersion. Holes with smaller areas are used to create a tetra-core PCF structure. Ethanol is filled in the holes of smaller area while the larger holes of cladding region are airfilled. Optical properties including dispersion, effective mode area, confinement loss, normalized frequency, and nonlinear coefficient of the designed PCF structures are investigated via full vector finite difference time domain (FDTD) method. A PCF structure with lead silicate as wafer exhibits significantly better results than a PCF structure with silica as wafer. However, both structures report dispersion at a telecommunication wavelength corresponding to 1.55 ㎛. Furthermore, the PCF structure with lead silicate as wafer exhibits a very high nonlinear coefficient corresponding to 1375 W-1 km-1 at the same wavelength. This scheme can be used for optical communication systems and in optical devices by exploiting the principle of nonlinearity.