• Title/Summary/Keyword: Structure Equation Model

Search Result 979, Processing Time 0.03 seconds

Enhancement of thermal buckling strength of laminated sandwich composite panel structure embedded with shape memory alloy fibre

  • Katariya, Pankaj V.;Panda, Subrata K.;Hirwani, Chetan K.;Mehar, Kulmani;Thakare, Omprakash
    • Smart Structures and Systems
    • /
    • v.20 no.5
    • /
    • pp.595-605
    • /
    • 2017
  • The present article reported the thermal buckling strength of the sandwich shell panel structure and subsequent improvement of the same by embedding shape memory alloy (SMA) fibre via a general higher-order mathematical model in conjunction with finite element method. The geometrical distortion of the panel structure due to the temperature is included using Green-Lagrange strain-displacement relations. In addition, the material nonlinearity of SMA fibre due to the elevated thermal environment also incorporated in the current analysis through the marching technique. The final form of the equilibrium equation is obtained by minimising the total potential energy functional and solved computationally with the help of an original MATLAB code. The convergence and the accuracy of the developed model are demonstrated by solving similar kind of published numerical examples including the necessary input parameter. After the necessary establishment of the newly developed numerical solution, the model is extended further to examine the effect of the different structural parameters (side-to-thickness ratios, curvature ratios, core-to-face thickness ratios, volume fractions of SMA fibre and end conditions) on the buckling strength of the SMA embedded sandwich composite shell panel including the different geometrical configurations.

Relationships Between Corporate Social Responsibility, Firm Value, and Institutional Ownership: Evidence from Indonesia

  • HERMEINDITO, Hermeindito
    • The Journal of Asian Finance, Economics and Business
    • /
    • v.9 no.5
    • /
    • pp.365-376
    • /
    • 2022
  • This study aims to look into the causal relationships between corporate social responsibility and firm value, corporate social responsibility and institutional ownership, and firm value and institutional ownership. This study develops a triangle model of causal relationships among the three endogenous variables. Samples for this study are manufacturing companies listed on the Indonesia Stock Exchange for the period 2014-2018. The model is operated in the system of simultaneous equation models using the generalized method of moments technique to estimate parameter coefficients. After controlling the effects of trade-off/balancing capital structure and managerial ownership, the research findings show a positive causal relationship between CSR and firm value and firm value and institutional ownership. Institutional ownership has a positive effect on CSR, while the effect of CSR on institutional ownership is negative in the firms without managerial ownership and positive in the firms with managerial ownership. This study finds that the causal relationship between CSR and firm value is stronger after the trade-off/balancing of capital structure is included in the model. Capital structure has a convex effect on firm value and positively impacts institutional ownership. In addition, an independent commissioner has a negative impact on CSR but has no direct impact on firm value.

Numerical Simulation of Wave Deformation due to a Submerged Structure with a Second-order VOF Method (2차 정확도 VOF기법을 활용한 수중구조물에 의한 파랑변화 예측)

  • Ha, Tae-Min;Cho, Yong-Sik
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.10 no.1
    • /
    • pp.111-117
    • /
    • 2010
  • A three-dimensional numerical model is employed to investigate wave deformation due to a submerged structure. The three-dimensional numerical model solves the spatially averaged Navier-Stokes equations for two-phase flows. The LES(large-eddy-simulation) approach is adopted to model the turbulence effect by using the Smagorinsky SGS(sub-grid scale) closure model. The two-step projection method is employed in the numerical solutions, aided by the Bi-CGSTAB technique to solve the pressure Poisson equation for the filtered pressure field. The second-order accurate VOF(volume-of-fluid) method is used to track the distorted and broken free surface. A simple linear wave is generated on a constant depth and compared with analytical solutions. The model is then applied to study wave deformation due to a submerged structure and the predicted results are compared with available laboratory measurements.

Thermal Cycling Fatigue Analysis of Flip-Chip BGA Solder Joints (플립 칩 BGA 솔더접합부의 열사이클링 피로해석)

  • 김경섭;유정희;김남훈;장의구;임희철
    • Proceedings of the International Microelectronics And Packaging Society Conference
    • /
    • 2002.11a
    • /
    • pp.27-32
    • /
    • 2002
  • In this paper, global full 3D finite element analysis fatigue models are constructed for flip-chip BGA on board to predict the creep fatigue life of solder joints during the thermal cycling test. The fatigue model applied is based on Darveaux's empirical equation approach with non-linear viscoplastic analysis of solder joints. It was estimated by the creep life as the variations of the four kinds of thermal cycling test conditions, pad structure, composition and size of solder ball. The shortest fatigue life of results was obtained at the thermal cycling testing condition of -65℃ ∼ 150℃. It was increased about 3.5 times in comparison with that of 0℃ ∼ 100℃. As the change of pad structure at the same other conditions, the fatigue life of SMD structure increased about 5.7% as compared with NSMD structure. Consequently, it was confirmed that the fatigue life became short as the creep strain energy density increased in solder joint.

  • PDF

Development of VLSI Process Simulator (반도체 공정 시뮬레이터 개발에 관한 연구)

  • 이경일;공성원;윤상호;이제희;원태영
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1994.11a
    • /
    • pp.40-45
    • /
    • 1994
  • The TCAD(Technology Computer Aided Design) software tool is a popular name to be able to simulate the semiconductor process and device circuit. We have developed a two-dimensional TCAD software tool included an editor, parser, each process unit, and 2D, 3D graphic routine that is Integrated Environment. The initial grid for numerical analysis is automatically generated with the geometric series that use the user default(given) line and position separated with grid interval and the nodes corresponding to each mesh point stoic the all the possible attribute. Also, we made a data structure called PIF for input or output. Methods of ion implantation in this paper arc Monte Carlo, Gaussian Pearson and Dual-Pearson. Analytical model such as Gaussian, Pearson and Dual-Pearson were considered the multilayer structure and two-dimensional tilted implantation. We simuttaneously calculated the continuity equation of impurity and point defect in diffusion simulation. Oxidation process was simulated by analytical ERFC(Complementary Error Function) model for local oxidation.

Regression Analysis of Longitudinal Data Based on M-estimates

  • Jung, Sin-Ho;Terry M. Therneau
    • Journal of the Korean Statistical Society
    • /
    • v.29 no.2
    • /
    • pp.201-217
    • /
    • 2000
  • The method of generalized estimating equations (GEE) has become very popular for the analysis of longitudinal data. We extend this work to the use of M-estimators; the resultant regression estimates are robust to heavy tailed errors and to outliers. The proposed method does not require correct specification of the dependence structure between observation, and allows for heterogeneity of the error. However, an estimate of the dependence structure may be incorporated, and if it is correct this guarantees a higher efficiency for the regression estimators. A goodness-of-fit test for checking the adequacy of the assumed M-estimation regression model is also provided. Simulation studies are conducted to show the finite-sample performance of the new methods. The proposed methods are applied to a real-life data set.

  • PDF

Implementation of Implicit Model Reference Adaptive Control System (내재성 기본모델을 사용한 적용제어 시스템의 구성)

  • 허욱열;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.32 no.4
    • /
    • pp.136-144
    • /
    • 1983
  • In this paper, a new scheme of implicit MRAC is presented for single input single output discrete system. The MRAC can be applied to the nonminimum phase system, too. They have simple structure because the parameters of the controller are estimated directly by changing the plant output equation properly. In this scheme, the observation process is well seperated from the adaptation process, so the adaptation algorithm is derived from the exponentially weighted least square method which has fast convergence characteristics and can deal with the time varying plant. The consistency of the estimated parameter is proved. And it is also proved the whole system has the stabilizing property. The effectiveness of the algorithm and the structure is illustrated by the computer simulation of the model reference adaptive control for a third order plant. It is proposed how to select the selectable parameters in the adaptive control system from the simulation results.

  • PDF

Structural joint modeling and identification: numerical and experimental investigation

  • Ingole, Sanjay B.;Chatterjee, Animesh
    • Structural Engineering and Mechanics
    • /
    • v.53 no.2
    • /
    • pp.373-392
    • /
    • 2015
  • In the present work, structural joints have been modeled as a pair of translational and rotational springs and frequency equation of the overall system has been developed using sub-structure synthesis. It is shown that using first few natural frequencies of the system, one can obtain a set of over-determined system of equations involving the unknown stiffness parameters. Method of multi-linear regression is then applied to obtain the best estimate of the unknown stiffness parameters. The estimation procedure has been developed first for a two parameter joint model and then for a three parameter model, in which cross coupling terms are also included. Two cases of structural connections have been considered, first with a cantilever beam with support flexibility and then a pair of beams connected through lap joint. The validity of the proposed method is demonstrated through numerical simulation and by experimentation.

FLUID-GRANULE MIXED FLOIW DOWNSTREAM OF SCOUR HOLE AT OUTLET OF HYDRAULIC STRUCTURE

  • Kim, Jin-Hong;Shim, Myung-Pil;Kim, Kyung-Sub
    • Water Engineering Research
    • /
    • v.3 no.3
    • /
    • pp.155-162
    • /
    • 2002
  • This study presents the theoretical approach for volume concentration, velocity profile, and granular discharge on the fluid-granule mixed flow downstream of the scour hole at the outlet of the hydraulic structure. Concept of dilatant model was applied for the stress-strain relationships of fluid-granule mixed flow since the flow downstream of the scour hole corresponds to debris flow, where momentum transfers through particle collisions. Mathematical formulations were derived using momentum equation and stress-strain relation of the fluid-granule mixture. Velocity profile under the assumption of uniform concentration over flowing layer showed the downward convex type. Deposition angle of downstream hump was found to be a function of an upstream slope angle, a dynamic friction angle and a volume concentration irrespective of flow itself, Granular discharge and the overflow depth were obtained with given values of inflow rates. Experimental results showed relatively good agreements with theoretical ones.

  • PDF

Active Structural Vibration Control using Forecasting Control Method (예측 제어기법을 이용한 기계 구주물의 능동 진동제어)

  • 황요하
    • Journal of KSNVE
    • /
    • v.2 no.4
    • /
    • pp.293-304
    • /
    • 1992
  • Active vibration control is presented with simulation and experiment. Dynamic Data System(DDS) method is used for system modeling and this model is combined with an forecasting control technique to derive a control equation. In the experiment, on-line digital computer monitors structural vibration and calculates control input. The control input is sent to an electromagnetic actuator which cancels the structural vibration. Experiment is performed first with a simple beam setup to demonstrate the effetiveness of this method. This method is then applied to a color laser printer to actively modify the structure. The beam experiment showed vibration reduction of over 60% with one-and two-DOF models. In the printer structure experiment, the first mode of 308 Hz was successfully controlled with a one-DOF model.

  • PDF