• Title/Summary/Keyword: Structure Dynamic Design

Search Result 1,779, Processing Time 0.031 seconds

A nonlinear structural experiment platform with adjustable plastic hinges: analysis and vibration control

  • Li, Luyu;Song, Gangbing;Ou, Jinping
    • Smart Structures and Systems
    • /
    • v.11 no.3
    • /
    • pp.315-329
    • /
    • 2013
  • The construction of an experimental nonlinear structural model with little cost and unlimited repeatability for vibration control study represents a challenging task, especially for material nonlinearity. This paper reports the design, analysis and vibration control of a nonlinear structural experiment platform with adjustable hinges. In our approach, magnetorheological rotary brakes are substituted for the joints of a frame structure to simulate the nonlinear material behaviors of plastic hinges. For vibration control, a separate magnetorheological damper was employed to provide semi-active damping force to the nonlinear structure. A dynamic neural network was designed as a state observer to enable the feedback based semi-active vibration control. Based on the dynamic neural network observer, an adaptive fuzzy sliding mode based output control was developed for the magnetorheological damper to suppress the vibrations of the structure. The performance of the intelligent control algorithm was studied by subjecting the structure to shake table experiments. Experimental results show that the magnetorheological rotary brake can simulate the nonlinearity of the structural model with good repeatability. Moreover, different nonlinear behaviors can be achieved by controlling the input voltage of magnetorheological rotary damper. Different levels of nonlinearity in the vibration response of the structure can be achieved with the above adaptive fuzzy sliding mode control algorithm using a dynamic neural network observer.

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Dynamic Interaction Analysis of Maglev and 3 Span Continuous Guideway Based on 3 D Multibody Dynamic Simulation (3차원 다물체동역학 시뮬레이션 기반 자기부상열차와 3경간 연속교 동적상호작용 해석)

  • Han, Jong-Boo;Kim, Ki-Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.21 no.4
    • /
    • pp.409-416
    • /
    • 2016
  • This study aims to investigate dynamic interaction characteristics between Maglev train and 3 span continuous guideway. The integrated model including a 3D full vehicle model based on multibody dynamics, flexible guideway by a modal superposition method, and levitation electromagnets with the feedback controller is proposed. The proposed model was applied to the Incheon Airport Maglev Railway to analyze the dynamic response of the vehicle and guideway from the numerical simulation. Using field test data of air gap and guideway deflections, obtained from the Incheon Airport Maglev Railway, the analysis method is verified. From the results, it is confirmed that Maglev railway system are designed and constructed safely according to the design criteria.

Analysis of Dynamic Model and Design of Optimized Fuzzy PID Controller for Constant Pressure Control (정압제어를 위한 동적모델 해석 및 최적 퍼지 PID 제어기설계)

  • Oh, Sung-Kwun;Cho, Se-Hee;Lee, Seung-Joo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.2
    • /
    • pp.303-311
    • /
    • 2012
  • In this study, we introduce a dynamic process model as well as the design methodology of optimized fuzzy controller for its efficient application to vacuum production system to produce a semiconductor, solar module and display and so on. In a vacuum control field, PID control method is widely used from the viewpoint of simple structure and preferred performance. But, PID control method is very sensitive to the change of environment of control system as well as the change of control parameters. Therefore, it's difficult to get a preferred performance results from target system which has a complicated structure and lots of nonlinear factors. To solve such problem, we propose the design methodology of an optimized fuzzy PID controller through a following series of steps. First a dynamic characteristic of the target system is analyzed through a series of experiments. Second the process model is built up and its characteristic is compared with real process. Third, the optimized fuzzy PID controller is designed using genetic algorithms. Finally, the fuzzy controller is applied to target system and then its performance is compared with that of other conventional controllers(PID, PI, and Fuzzy PI controller). The performance of the proposed fuzzy controller is evaluated in terms of auto-tuned control parameters and output responses considered by ITAE index, overshoot, rise time and steady state time.

The Effects of the Stiffness Mistuning on the Dynamic Response of Periodic Structures under a Harmonic Force (강성 불균일이 조화가진을 받는 주기적 구조물의 동특성에 미치는 영향)

  • Ahn, T.K.;Shkel A.M.
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.12 s.105
    • /
    • pp.1355-1360
    • /
    • 2005
  • Periodic structures can be applied as a MEMS(micro-electro-mechanical system) sensor or actuator due to low energy loss and wideband frequency response. The dynamic behavior of a mistuned periodic structure Is dramatically changed from that of a perfectly tuned periodic structure. The effects of mistuning, coupling stiffness, and driving point on the forced vibration responses of a simple periodic structure ate investigate4 through numerical simulations. On the basis of that, one can design effective and reliable MEMS components using periodic structures.

Evaluation of the Applicability of Existing Design Formula for Seismic Isolation to Nuclear Power Plants (원자력발전소 면진적용을 위한 기존 설계식의 적용성 검토)

  • Kim, Hyun-Uk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.16 no.6
    • /
    • pp.29-36
    • /
    • 2012
  • Involved in a research for the application of seismic isolation to the nuclear industry, this study evaluates firstly the responses of seismic isolation system considering general ranges of structural period and damping ratio by using preliminary design formula. Secondly, coupling effects of input motions were evaluated to find out appropriate conditions of excitations and effect of the iteration for calculating yield displacement of lead core was also assessed in terms of response of a seismically isolated structure. Finally, the results of preliminary design calculation were compared with those of dynamic analysis and the propriety of the formula was evaluated and appropriate ranges of reduction factor were also suggested from the results.

Design of MR dampers to prevent progressive collapse of moment frames

  • Kim, Jinkoo;Lee, Seungjun;Min, Kyung-Won
    • Structural Engineering and Mechanics
    • /
    • v.52 no.2
    • /
    • pp.291-306
    • /
    • 2014
  • In this paper the progressive collapse resisting capacity of steel moment frames with MR dampers is evaluated, and a preliminary design procedure for the dampers to prevent progressive collapse is suggested. Parametric studies are carried out using a beam-column subassemblage with varying natural period, yield strength, and damper force. Then the progressive collapse potentials of 15-story steel moment frames installed with MR dampers are evaluated by nonlinear dynamic analysis. The analysis results of the model structures showed that the MR dampers are effective in preventing progressive collapse of framed structures subjected to sudden loss of a first story column. The effectiveness is more noticeable in the structure with larger vertical deflection subjected to larger inelastic deformation. The maximum responses of the structure installed with the MR dampers designed to meet a given target dynamic response factor generally coincided well with the target value on the conservative side.

A Study of Sensitivity Analysis on Dynamic Response of Three Dimensional Rectilinear Structure (3 차원 직선형 구조물의 동적응답에 대한 감도해석)

  • Moon, D.H.;Kang, H.S.;Choi, M.S.
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2000.06a
    • /
    • pp.556-562
    • /
    • 2000
  • This paper presents new sensitivity analysis algorithm for the dynamic response of three dimensional rectilinear type structure. This method is derived from a combination of the transfer stiffness coefficient method(TSCM) and the Newmark method. We developed dynamic response analysis algorithm by TSCM. This method has more safe computational precision and time than transfer matrix method(TMM). We defined new design variable and object function, and computated simple three dimensional computation model by TSCM. The presented analysis algorithm was validated by results of changing design variable.

  • PDF

Model Updating of Beams with Shape Change and Measurement Error Using Parameter Modification (파라미터 수정을 사용한 형상변화 및 측정오차가 있는 빔의 모델개선)

  • Yoon, Byung-Ok;Choi, Yoo-Keun;Jang, In-Sik
    • Proceedings of the KSME Conference
    • /
    • 2001.06b
    • /
    • pp.335-340
    • /
    • 2001
  • It is important to model the mechanical structure precisely and reasonably in predicting the dynamic characteristics, controlling the vibration, and designing the structure dynamics. In the finite element modeling, the errors can be contained from the physical parameters, the approximation of the boundary conditions, and the element modeling. From the dynamic test, more precise dynamic characteristics can be obtained. Model updating using parameter modification is appropriate when the design parameter is used to analyze the input parameter like finite element method. Finite element analysis for cantilever and simply supported beams with uniform area and shape change are carried out as model updating examples. Mass and stiffness matrices are updated by comparing test and analytical modal frequencies. The result shows that the updated frequencies become closer to the test frequencies.

  • PDF

Non-linear incidental dynamics of frame structures

  • Radoicic, Goran N.;Jovanovic, Miomir Lj.;Marinkovic, Dragan Z.
    • Structural Engineering and Mechanics
    • /
    • v.52 no.6
    • /
    • pp.1193-1208
    • /
    • 2014
  • A simulation of failures on responsible elements is only one form of the extreme structural behavior analysis. By understanding the dynamic behavior in incidental situations, it is possible to make a special structural design from the point of the largest axial force, stress and redundancy. The numerical realization of one such simulation analysis was performed using FEM in this paper. The boundary parameters of transient analysis, such as overall structural damping coefficient, load accelerations, time of load fall and internal forces in the responsible structural elements, were determined on the basis of the dynamic experimental parameters. The structure eigenfrequencies were determined in modal analysis. In the study, the basic incidental models were set. The models were identified by many years of monitoring incidental situations and the most frequent human errors in work with heavy structures. The combined load models of structure are defined in the paper since the incidents simply arise as consequences of cumulative errors and failures. A feature of a combined model is that the single incident causes the next incident (consecutive timing) as well as that other simple dynamic actions are simultaneous. The structure was observed in three typical load positions taken from the crane passport (range-load). The obtained dynamic responses indicate the degree of structural sensitivity depending on the character of incident. The dynamic coefficient KD was adopted as a parameter for the evaluation of structural sensitivity.