• 제목/요약/키워드: Structure Analyses

검색결과 3,070건 처리시간 0.03초

서울지하철공사와 암반구조 (Geological Structure Related to Seoul Sub-way Construction.)

  • 이수곤
    • 화약ㆍ발파
    • /
    • 제10권3호
    • /
    • pp.8-25
    • /
    • 1992
  • On the Sub- way Construction It is important to Survey in advance the Geological Structure and also to make the Engineering Geological map this paper deseribs the feature of Geological structure of Seoul Area and analyses the recently occured Rock falling acciudents. NATM Tunnelling always must be done with careful observation and measurement of the geological condition.

  • PDF

Molecular Recognition : ${\alpha}$-Cyclodextrin and Aspirin Inclusion Complexation

  • Hee Sook Choi
    • Bulletin of the Korean Chemical Society
    • /
    • 제13권5호
    • /
    • pp.474-479
    • /
    • 1992
  • Molecular interaction between ${\alpha}$-cyclodextrin and aspirin was studied by UV, $^2H$-NMR and $^2H$-NMR spectroscopy analyses for solution complex and by FT-IR analyses for solid complex. The inclusion structure provides a basic understanding of the aspirin and ${\alpha}$-cyclodextrin interaction.

Chemical Bonding Nature and Mesoporous Structure of Nickel Intercalated Montmorillonite Clay

  • Park, Hye-Mi;Kim, Tae-Woo;Hwang, Seong-Ju;Choy, Jin-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제27권9호
    • /
    • pp.1323-1328
    • /
    • 2006
  • Mesoporous nickel intercalated aluminosilicate nanohybrid has been synthesized through a recombination reaction between the colloidal suspension of exfoliated montmorillonite nanosheets and aqueous nickel acetate solution. According to powder X-ray diffraction and field emission-scanning electron microscopic analyses, the intercalation of nickel species expands significantly the basal spacing of the host montmorillonite clay and the crystallites of the intercalation compound are assembled to form a house-of-card structure. $N_2$ adsorption-desorption isotherm measurements with BJH pore analyses clearly demonstrated that the porosity of the intercalate originates mainly from mesopores (diameter $\sim50\;\AA$) formed by the house-of-card type stacking of clay crystallites. From FT-IR and X-ray absorption spectroscopic analyses, it becomes certain that intercalated nickel ion is stabilized in an isolated $NiO_6$ octahedral unit. The present mesoporous intercalation compound is expected to be applicable as efficient catalysts or absorbents.

Studies on post-tensioned and shaped space-truss domes

  • Schmidt, Lewis C.;Li, Hewen
    • Structural Engineering and Mechanics
    • /
    • 제6권6호
    • /
    • pp.693-710
    • /
    • 1998
  • This paper concerns studies on the shape formation of post-tensioned and shaped steel domes. The post-tensioned and shaped steel domes, assembled initially at ground level in an essentially flat condition, are shaped to a curved space form and erected into the final position by means of a post-tensioning technique. Based on previous studies on this shape formation principle, three post-tensioned and shaped steel domes have been constructed. The results of the shape formation tests and finite element analyses are reported in this paper. It is found that the first two test domes did not furnish a part-spherical shape as predicted by finite element analyses, because the movements of some mechanisms were not controlled sufficiently. With a revised post-tensioning method, the third dome obtained the theoretical prediction. The test results of the three post-tensioned and shaped domes have shown that a necessary condition to form a desired space shape from a planar layout with low joint stiffnesses is that the movements of all the existing mechanisms must be effectively controlled as indicated by the finite element analysis. The extent of the maximum elastic deformation of a post-tensioned and shaped steel structure is determined by the strength of the top chords and their joints. However, due to the semi-rigid characteristic of the top chord joints, the finite element analyses cannot give a close prediction for the maximum elastic deformations of the post-tensioned and shaped steel domes. The results of the current studies can be helpful for the design and construction of this type of structure.

점성 및 충격파효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석 (Flow-induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects)

  • 오세원;박웅;김동현
    • 한국소음진동공학회논문집
    • /
    • 제16권9호
    • /
    • pp.937-948
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

공기부양 물체의 유동-구조 연동운동 해석을 위한 능동형 스테레오-PIV 시스템 (Adaptive Stereoscopic-PIV System for the Analyses of the Flow-Structure-Interactions (FSI) of Air-Lifted Bodies)

  • 도덕희;황태규;조효제
    • 한국해양공학회:학술대회논문집
    • /
    • 한국해양공학회 2006년 창립20주년기념 정기학술대회 및 국제워크샵
    • /
    • pp.420-425
    • /
    • 2006
  • Measurements results of flow-structure-interactions (FSI) of an air-lifted body are introduced. An adaptive stereoscopic-PIV system has been constructed for the measurements of the air-lifted body. The measurement system consists of two cameras and optical sensors. The flow characteristics around a lifted cylinder body(length=60mmm, diameter =10mm, polystyrene) in the swirling flow field in a vertical pipe (length=600mm, inner diameter=) are investigated by the use of the constructed adaptive stereoscopic-PIV system. The images of the two cameras were used for the analysis of the flow fields around the floated cylinder body. The images of the cylinder body captured by the two cameras were used for the analyses of its motions. Four optical sensors (LED) were used for the detection of the postures of the freely-lifted cylinder body. The FSI analyses have been carried out to find the physical conditions at which the floating body is stabilized with its upright postures.

  • PDF

점성 및 충격파 효과를 고려한 천음속 터빈 케스케이드의 유체유발 진동해석 (Flow-Induced Vibration of Transonic Turbine Cascades Considering Viscosity and Shock Wave Effects)

  • 오세원;김동현;박웅
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 춘계학술대회논문집
    • /
    • pp.793-802
    • /
    • 2006
  • In this study, a fluid/structure coupled analysis system for simulating complex flow-induced vibration (FIV) phenomenon of cascades has been developed. The flow is modeled using Euler and Wavier-Stokes equations with different turbulent models. The fluid domains are modeled using the unstructured grid system with dynamic deformations due to the motion of structural boundary. The Spalart-Allmaras (S-A) and the SST ${\kappa}-{\omega}$ turbulent models are used to predict the transonic turbulent flows. A fully implicit time marching scheme based on the Newmark direct integration method is used in order to solve the coupled governing equations for viscous flow-induced vibration phenomena. For the purpose of validation for the developed FIV analysis system, comparison results for computational analyses of steady and unsteady aerodynamics and flutter analyses are presented in the transonic flow region. In addition, flow-induced vibration analyses for the isolated cascade and multi-blades cascade models have been conducted to show the physical fluid-structure interaction effects in the time domain.

  • PDF

Nonlinear analyses of steel beams and arches using virtual unit moments and effective rigidity

  • Koubova, Lenka;Janas, Petr;Markopoulos, Alexandros;Krejsa, Martin
    • Steel and Composite Structures
    • /
    • 제33권5호
    • /
    • pp.755-765
    • /
    • 2019
  • This study examined geometric and physical nonlinear analyses of beams and arches specifically from rolled profiles used in mining and underground constructions. These profiles possess the ability to create plastic hinges owing to their robustness. It was assumed that displacements in beams and arches fabricated from these profiles were comparable with the size of the structure. It also considered changes in the shape of a rod cross-section and the nonlinearities of the structure. The analyses were based on virtual unit moments, effective flexural rigidity of used open sections, and a secant method. The use of the approach led to a solution for the "after-critical" condition in which deformation increased with decreases in loads. The solution was derived for static determinate beams and static indeterminate arches. The results were compared with results obtained in other experimental tests and methods.

Rotational capacity of shallow footings and its implication on SSI analyses

  • Blandon, Carlos A.;Smith-Pardo, J. Paul;Ortiz, Albert
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.591-617
    • /
    • 2015
  • Standards for seismic assessment and retrofitting of buildings provide deformation limit states for structural members and connections. However, in order to perform fully consistent performance-based seismic analyses of soil-structure systems; deformation limit states must also be available for foundations that are vulnerable to nonlinear actions. Because such limit states have never been established in the past, a laboratory testing program was conducted to study the rotational capacity of small-scale foundation models under combined axial load and moment. Fourteen displacement-controlled monotonic and cyclic tests were performed using a cohesionless soil contained in a $2.0{\times}2.0{\times}1.2m$ container box. It was found that the foundation models exhibited a stable hysteretic behavior for imposed rotations exceeding 0.06 rad and that the measured foundation moment capacity complied well with Meyerhof's equivalent width concept. Simplified code-based soil-structure analyses of an 8-story building under an array of strong ground motions were also conducted to preliminary evaluate the implication of finite rotational capacity of vulnerable foundations. It was found that for the same soil as that of the experimental program foundations would have a deformation capacity that far exceeds the imposed rotational demands under the lateral load resisting members so yielding of the soil may constitute a reliable source of energy dissipation for the system.

구형 LNG운반선의 탱크지지 구조인 스커트의 좌굴강도에 대한 연구 (A Study on the Buckling Strength of the Skirt Structure in the Spherical LNG Carriers)

  • 김을년
    • 대한조선학회논문집
    • /
    • 제54권5호
    • /
    • pp.393-405
    • /
    • 2017
  • This paper deals with the buckling strength of the skirt structure in the spherical LNG carriers. The spherical cargo tank systems consist of spherical tank, skirt, tank cover, pump tower, etc. The skirt supports the spherical cargo tank and is connected with ship hull structure. It is designed to act as a thermal brake between the tank and the hull structure by reducing the thermal conduction from the tank to the supporting structure. It is built up of three parts, upper aluminum part, middle stainless steel part and lower carbon steel part. The 150K spherical LNG carrier was designed and carried out the strength verification under Classification Societies Rule. The design loads due to acceleration, thermal distribution, self-weight and cargo weight were estimated considering requirements of the Class Rule and numerical simulation analyses. Based on the obtained design loads and experienced project data, the initial structure scantling was carried out. To verify the structural integrity, theoretical and numerical analyses were carried out and strength was evaluated aspect of buckling capacity. The results by LR and DNV design code are shown and discussed.