• 제목/요약/키워드: Structural-analysis

검색결과 22,124건 처리시간 0.044초

New generation software of structural analysis and design optimization--JIFEX

  • Gu, Yuanxian;Zhang, Hongwu;Guan, Zhenqun;Kang, Zhan;Li, Yunpeng;Zhong, Wanxie
    • Structural Engineering and Mechanics
    • /
    • 제7권6호
    • /
    • pp.589-599
    • /
    • 1999
  • This paper presents the development and applications of the software package JIFEX, a new finite element system which can be used for structural analysis and optimum design by the modern computer hardware and software technologies such as MS Windows95/NT and Pentium PC platforms. The complete system of JIFEX is programmed with $C/C^{++}$ language to make full use of advanced facilities of MS Windows95/NT. In the system, the finite element data pre-processing, based on the most popular CAD package AutoCAD (R13, R14), has been implemented, so that the finite element modeling could be integrated with geometric modeling of CAD. The system not only has interactive graphics facility for data post-processing, but also realizes the real-time computing visualization by means of the Dynamic Data Exchange (DDE) technique. Running on the Pentium computers, JIFEX can solve large-scale finite element analysis problems such as the ones with more than 60000 nodes in the finite element model.

통합 구조 시스템의 유한요소망 형성의 자동화 (Automated Finite Element Mesh Generation for Integrated Structural Systems)

  • 윤종열
    • 한국지진공학회논문집
    • /
    • 제27권2호
    • /
    • pp.77-82
    • /
    • 2023
  • The structural analysis module is an essential part of any integrated structural system. Diverse integrated systems today require, from the analysis module, efficient real-time responses to real-time input such as earthquake signals, extreme weather-related forces, and man-made accidents. An integrated system may also be for the entire life span of a civil structure conceived during the initial conception, developed throughout various design stages, effectively used in construction, and utilized during usage and maintenance. All these integrated systems' essential part is the structural analysis module, which must be automated and computationally efficient so that responses may be almost immediate. The finite element method is often used for structural analysis, and for automation, many effective finite element meshes must be automatically generated for a given analysis. A computationally efficient finite element mesh generation scheme based on the r-h method of mesh refinement using strain deviations from the values at the Gauss points as error estimates from the previous mesh is described. Shape factors are used to sort out overly distorted elements. A standard cantilever beam analyzed by four-node plane stress elements is used as an example to show the effectiveness of the automated algorithm for a time-domain dynamic analysis. Although recent developments in computer hardware and software have made many new applications in integrated structural systems possible, structural analysis still needs to be executed efficiently in real-time. The algorithm applies to diverse integrated systems, including nonlinear analyses and general dynamic problems in earthquake engineering.

구조 형태에 따른 1차원 보와 2차원 평판 구조 해석 비교

  • 강유진;심지수
    • EDISON SW 활용 경진대회 논문집
    • /
    • 제4회(2015년)
    • /
    • pp.274-278
    • /
    • 2015
  • There are different kinds of aircrafts, such as conventional airplane, rotorcraft, fighter, and unmanned aerial vehicle. Their shape and feature are dependent upon their assigned mission. One of the fundamental analyses during the design of the aircraft is the structural analysis. The structural analysis becomes more complicated and needs more computations because of the on-going complex aircrafts' structure. In order for efficiency in the structural analysis, a simplified approach, such as equivalent beam or plate model, is preferred. However, it is not clear which analysis will be appropriate to analyze the realistic configuration, i.e., an equivalent beam or plate analysis for an aircraft wing. It is necessary to assess the boundary between the one-dimensional beam analysis and the two-dimensional plate theory for an accurate structural analysis. Thus, in this paper, the static structural analysis results obtained by EDISON solvers were compared with the three-dimesional results obtained from MSC NASTRAN. Before that, EDISON program was verified by comparing the results with those from MSC NASTRAN program and analytic solution.

  • PDF

FCT 검사 자동화 System의 구조해석 및 구조 안전성에 관한 연구 (Structural Analysis and Safety of FCT Inspection Automation System)

  • 정해진;이종찬
    • 한국기계가공학회지
    • /
    • 제21권7호
    • /
    • pp.114-119
    • /
    • 2022
  • The analysis conditions were established using the self-weight of the FCT automation equipment, and natural frequency analysis was performed under the same conditions. For the structural analysis, 3D modeling was performed using Inventor, and structural analysis was performed using the Ansys workbench. From the structural analysis, it was concluded that the resulting values of the stress and deformation of the equipment do not affect the equipment. From the dynamic analysis, the resonance does not occur in the equipment driving area, and thus it is judged to be stable.

구조해석을 통한 보조발전기 경량화에 관한 연구 (A Study on the Light Weighting of APU through Structural Analysis)

  • 김혜은;김진훈;노상완;김병호;백현무
    • 품질경영학회지
    • /
    • 제47권4호
    • /
    • pp.895-910
    • /
    • 2019
  • Purpose: The purpose of this study is to lighten the APU (Auxiliary Power Unit) structure of the KAAV (Korea Assault Amphibious Vehicle) through structural analysis. Methods: Commercially-available program (MIDAS.NFX) was used for finite element analysis. Frequency response analysis was performed through linear static and mode analyses to verify the structural stability according to the change of the structural materials. Results: Numerical simulation (linear static, mode and frequency response analyses) results showed that the safety factor of the APU was over 1.5 even under the worst case conditions. The APU made by aluminum structures was expected to be available in the military field, since every requirements in the KDS (Korean Defense Specifications) was fulfilled during the various tests and evaluations. Conclusion: The structural analysis was verified that the structural stability of the APU structure of the KAAV after change of the structural material.

Additive 2D and 3D performance ratio analysis for steel outrigger alternative design

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • 제20권5호
    • /
    • pp.1133-1153
    • /
    • 2016
  • In this article, an additive performance ratio method using structural analysis of both 2D and 3D is introduced to mitigate the complexity of work evaluating structural performances of numerous steel outrigger alternatives in multi-story buildings, especially high-rise buildings. The combined structural analysis process enables to be the design of economic, safe, and as constructional demanding structures by exploiting the advantages of steel, namely: excellent energy dissipation and ductility. First the approach decides the alternative of numerous steel outriggers by a simple 2D analysis module and then the alternative is evaluated by 3D analysis module. Initial structural analyses of outrigger types are carried out through MIDAS Gen 2D modeling, approximately, and then the results appeal structural performance and lead to decide some alternative of outrigger types. ETABS 3D modeling is used with respect to realization and evaluation of exact structural behaviors. The approach reduces computational burden in compared to existing concepts such as full 3D analysis methods. The combined 2D and 3D tools are verified by cycle and displacement tests including comprehensive nonlinear dynamic simulations. The advantages and limitations of the Additive Performance Ratio Approach are highlighted in a case study on a high rise steel-composite building, which targets at designing the optimized alternative to the existing original outrigger for lateral load resisting system.

블록화기법을 이용한 대형구조물의 해석방법 (An Analysis Method of Large Structure Using Matrix Blocking)

  • 정성진;이민섭
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제18권2호
    • /
    • pp.30-37
    • /
    • 2014
  • 본 연구에서는 개인 컴퓨터의 플래시 메모리가 충분하지 않을 경우 대용량의 플래시 메모리를 필요로 하는 구조해석을 컴퓨터 프로그램으로 수행하는 방법론을 연구하였다. 이러한 문제점의 해결방안으로 강성행렬의 블록화기법 -강성행렬이 몇 개의 블록으로 나뉘고 각각의 블록에 대하여 행렬분해가 수행되는 방법- 을 제안하였으며 제안된 방법론을 바탕으로 컴퓨터 프로그래밍이 가능한 알고리즘을 제시하였다. 끝으로, 본 연구를 바탕으로 구조해석 프로그램을 개발하였으며 몇 가지 기초적인 구조해석 예제를 통하여 개발 알고리즘의 정합성 및 효율성을 확인할 수 있었다.

의류 점포의 VMD 구성 요소와 관련 변인 연구 (A Study on the Relationship between VMD Structural Elements of Apparel Stores and Related Variables)

  • 김선희
    • 복식문화연구
    • /
    • 제15권4호
    • /
    • pp.726-736
    • /
    • 2007
  • The purpose of this study was to identify VMD structural elements of apparel stores, and related variables. The related variables are contained shopping orientation, store types, consumer satisfaction and the intention to purchase in apparel stores. The data was collected from a questionnaire conducted on 378 female adults and was analyzed by frequency analysis, factor analysis, cluster analysis, ANDVA, regression, Duncan test, and reliability analysis. The results were as follows: (1) VMD structural elements of apparel store consisted of four factors: coordination/fitness, fashionability, attractiveness, and functionality. Shopping orientation consisted of six factors: recreational, rational, fashion oriented, convenience oriented, price conscious, and brand conscious. Shopper types consisted of four groups: recreational type shopper, economic type shopper, high involved shopper, and convenience oriented shopper. (2) Significant differences were find out between those shopper types and VMD structural elements. Significant differences were find out between store types and VMD structural elements. (3) VMD structural elements(coordination/fitness, functionality, fashionability) were influenced consumer satisfaction and the intention to purchase.

  • PDF

소형 요트의 기본 구조 설계 및 구조 해석 기법에 대한 연구 (A Study on the Structural Design and Structural Analysis for Small Yacht)

  • 신종계;이재열;이장현;반석호;이상홍;유재훈
    • 대한조선학회논문집
    • /
    • 제43권1호
    • /
    • pp.75-86
    • /
    • 2006
  • The scantling and structural design work is done during the initial stage in yacht design. This paper studies a procedure of the structural design for yacht with an illustrative design. Scantling of structural members and loads are defined based on the rules suggested by ISO(International Standard Organization) and ABS(American Bureau of Shipping). Also, FEA(Finite Element Analysis) model is presented for a practical guide for structural analysis. An equivalent structural element is used to simplify the composite material for the analysis.