• Title/Summary/Keyword: Structural vibration analysis

Search Result 2,204, Processing Time 0.026 seconds

Structural Vibration Analysis of Helicopter Search Light Considering Aerodynamic Buffet Load (공력 Buffet 하증을 고려한 헬리콥터 탐색등의 구조진동해석)

  • Kim, Yo-Han;Kim, Dong-Man;Kim, Dong-Hyun;Choi, Hui-Ju;Park, Yong-Suk;Kim, jong-Gun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2008.11a
    • /
    • pp.175-179
    • /
    • 2008
  • In this study, computational structural vibration analysis of helicopter search light exposing unsteady buffet load have been conducted using combined advanced numerical methods. Unsteady CFD method based on Navier-Stokes equations is used to predict viscous buffet load due to flow separation effects. Full three-dimensional finite element model is constructed in order to conduct static and structural dynamic analyses of the search light model for two different typical flight speeds. Also, the correct performance of the search light can be physically estimated to examine the actual lighting area considering the effects of structural deformations.

  • PDF

Structural Vibration Analysis of a Helicopter Search Light Considering Aerodynamic Buffet Load (공력 Buffet 하중을 고려한 헬리콥터 탐색등의 구조진동해석)

  • Kim, Yo-Han;Kim, Dong-Man;Kim, Dong-Hyun;Choi, Hui-Ju;Park, Yong-Suk;Kim, Jong-Gun
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.19 no.9
    • /
    • pp.870-875
    • /
    • 2009
  • In this study, computational structural vibration analysis of helicopter search light exposing unsteady buffet load have been conducted using combined advanced numerical methods. Unsteady CFD method based on Navier-Stokes equations is used to predict viscous buffet load due to flow separation effects. Full three-dimensional finite element model is constructed in order to conduct static and structural dynamic analyses of the search light model for two different typical flight speeds. Also, the correct performance of the search light can be physically estimated to examine the actual lighting area considering the effects of structural deformations.

A Study on the Analysis vibration of fluid flow in ECV

  • WANGWENHAI, WANGWENHAI;Cho, Haeng Muk
    • Journal of Energy Engineering
    • /
    • v.24 no.2
    • /
    • pp.115-119
    • /
    • 2015
  • Pipe vibration caused great threat to the safety in production. Strong pipeline vibration will line accessories, especially the joints and pipe fittings etc. pipe joints loosening and rupture, causing serious accidents. By the action of the compressor constant fluid flow within the pipe, this process produces pulsating fluid flow may cause vibration of the pipe, thereby reducing the efficiency of the pipeline, structural vibration induced fatigue, thereby resulting in even piping structural damage. This paper studies on the vibration problems caused by fluid, by analyzing the causes of pipeline vibration and factors affecting pipeline vibrations, FEM (Finite Element Method) analysis of modal and enforced vibration.

Structural Vibration Analysis for a Composite Smart UAV Considering Dynamic Hub-loads of the Tilt-rotor (틸트로터 허브 동하중을 고려한 복합재 스마트 무인기 진동해석)

  • Kim, Dong-Hyun;Jung, Se-Un;Koo, Kyo-Nam;Kim, Sung-Jun;Kim, Sung-Chan;Lee, Ju-Young;Choi, Ik-Hyeon;Lee, Jung-Jin
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.15 no.1 s.94
    • /
    • pp.63-71
    • /
    • 2005
  • In this study, structural vibration analyses of a composite smart unmanned aerial vehicle (UAV) have been conducted considering dynamic hub-loads of tilt-rotor. Practical computational structural dynamics technique based on the finite element method is applied using MSC/NASTRAN. The present smart UAV(TR-S2) structural model is constructed as full 3D configurations with both the helicopter flight mode and the airplane flight mode. Modal based transient response and frequency response analyses are used to efficiently investigate vibration characteristics of structure and installed electronic equipments. It is typically shown that the helicopter flight mode with the 90-deg tilting angle is the most critical case for the induced vibration of installed electronic equipments in the front.

A study on reduction of structural vibration of an intake manifold system (흡기다기관 시스템의 구조진동 저감에 대한 연구)

  • 윤성호;이귀영
    • Journal of the korean Society of Automotive Engineers
    • /
    • v.14 no.5
    • /
    • pp.69-82
    • /
    • 1992
  • Vibration of intake menifold is important as it could worsen the noise levels radiated from surface itself and support bracket, and it eventually leads to the failures of a Throttle Position Sensor and an Idle Air Control Valve. In this study, structural modification method is proposed to reduce structural vibration of an intake manifold system. At first, vibration problems are identified through tests on a running engine. Then modal data acquired by modal testing and finite element analysis are helpful to understand vibration mechanism of the system, and used as the design guide when structural modifications are attempted. After the system model is validated by comparison of the modal data obtained from analysis and experiment, iterative calculations are performed to find optimized structure of the system by finite element analysis. As a result, a newly designed plenum bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is suggested in such a way that the intake manifold is stiffened, and that design of the support bracket is changed in terms of bolting position, thickness, shape, and minimum weight increase. Finally, it is shown that a new design achieves a significant reduction of vibration of an intake manifold system and it is confirmed by tests on a running engine.

  • PDF

Measurement and Prediction Analysis of Ground and Structural Vibration Induced by Train Load (열차하중에 의한 지반 및 인접구조물의 진동 계측과 예측 해석)

  • 이주호;박광순;박경래;양신추
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 1998.04a
    • /
    • pp.365-370
    • /
    • 1998
  • In this study, the method of analysis which is developed for calculating dynamic train loads and ground vibration by Shin-Chu Yang is verified comparing measurements of real structure. The results of analysis are agreed well with measurements of ground and structural vibration induced by passing train. The vibration level of analyzed results which is more than that of measured gives conservative result. To analyze frequency characteristics, the analyzed results are applied to the ISO environmental vibration regulation and reveal the possibility of application in analysis of frequency characteristics.

  • PDF

Structural identification of gravity-type caisson structure via vibration feature analysis

  • Lee, So-Young;Huynh, Thanh-Canh;Kim, Jeong-Tae
    • Smart Structures and Systems
    • /
    • v.15 no.2
    • /
    • pp.259-281
    • /
    • 2015
  • In this study, a structural identification method is proposed to assess the integrity of gravity-type caisson structures by analyzing vibration features. To achieve the objective, the following approaches are implemented. Firstly, a simplified structural model with a few degrees-of-freedom (DOFs) is formulated to represent the gravity-type caisson structure that corresponds to the sensors' DOFs. Secondly, a structural identification algorithm based on the use of vibration characteristics of the limited DOFs is formulated to fine-tune stiffness and damping parameters of the structural model. Finally, experimental evaluation is performed on a lab-scaled gravity-type caisson structure in a 2-D wave flume. For three structural states including an undamaged reference, a water-level change case, and a foundation-damage case, their corresponding structural integrities are assessed by identifying structural parameters of the three states by fine-tuning frequency response functions, natural frequencies and damping factors.

Hydraulic and Structural Analysis for APR1400 Reactor Vessel Internals against Hydraulic Load Induced by Turbulence

  • Kim, Kyu Hyung;Ko, Do Young;Kim, Tae Soon
    • International Journal of Safety
    • /
    • v.10 no.2
    • /
    • pp.1-5
    • /
    • 2011
  • The structural integrity assessment of APR1400 (Advanced Power Reactor 1400) reactor vessel internals has been being performed referring the US Nuclear Regulatory Commission regulatory guide 1.20 comprehensive vibration assessment program prior to commercial operation. The program is composed of a hydraulic and structural analysis, a vibration measurement, and an inspection. This paper describes the hydraulic and structural analysis on the reactor vessel internals due to hydraulic loads caused by the turbulence of reactor coolant. Three-dimensional models were built for the hydraulic and structural analysis and then hydraulic loads and structural responses were predicted for five analysis cases with CFX and ANSYS respectively. The structural responses show that the APR1400 reactor vessel internals have sufficient structural integrity in comparison with the acceptance criteria.

  • PDF

Structural noise mitigation for viaduct box girder using acoustic modal contribution analysis

  • Liu, Linya;Qin, Jialiang;Zhou, Yun-Lai;Xi, Rui;Peng, Siyuan
    • Structural Engineering and Mechanics
    • /
    • v.72 no.4
    • /
    • pp.421-432
    • /
    • 2019
  • In high-speed railway (HSR) system, the structure-borne noise inside viaduct at low frequency has been extensively investigated for its mitigation as a research hotspot owing to its harm to the nearby residents. This study proposed a novel acoustic optimization method for declining the structure-borne noise in viaduct-like structures by separating the acoustic contribution of each structural component in the measured acoustic field. The structural vibration and related acoustic sourcing, propagation, and radiation characteristics for the viaduct box girder under passing vehicle loading are studied by incorporating Finite Element Method (FEM) with Modal Acoustic Vector (MAV) analysis. Based on the Modal Acoustic Transfer Vector (MATV), the structural vibration mode that contributes maximum to the structure-borne noise shall be hereinafter filtered for the acoustic radiation. With vibration mode shapes, the locations of maximum amplitudes for being ribbed to mitigate the structure-borne noise are then obtained, and the structure-borne noise mitigation performance shall be eventually analyzed regarding to the ribbing conduction. The results demonstrate that the structural vibration and structure-borne noise of the viaduct box girder mainly occupy both in the range within 100 Hz, and the dominant frequency bands both are [31.5, 80] Hz. The peak frequency for the structure-borne noise of the viaduct box girder is mainly caused by $16^{th}$ and $62^{th}$ vibration modes; these two mode shapes mainly reflect the local vibration of the wing plate and top plate. By introducing web plate at the maximum amplitude of main mode shapes that contribute most to the acoustic modal contribution factors, the acoustic pressure peaks at the field-testing points are hereinafter obviously declined, this implies that the structure-borne noise mitigation performance is relatively promising for the viaduct.

Dynamic Response of Building Structures Induced by Subway Operation (지하철 진동에 의한 건축구조물의 진동특성)

  • 김희철;이동근;민경원
    • Computational Structural Engineering
    • /
    • v.8 no.1
    • /
    • pp.95-106
    • /
    • 1995
  • Noise and vibration induced by subway operation are one of the major factor that annoy residents living near the subway tracks. In general, lateral vibration is the major concern when we are considering vibration of a building. However, the vertical vibration is the major concern in considering the vibration induced by the subway operation. Analysis model for the vertical vibration of the structure should consider the effect of beam vibration. Thus, the same model used for the lateral vibration analysis can not be used for an analysis of vertical vibration of the structure. Appropriate analysis model which can consider the inertia force of the beam is necessary when analyzing a structure for the vertical vibration. Modeling technique for the vertical vibration analysis of structures has been studied on this paper. It is recommended to use one or more elements for columns and to use two or more elements for beams when analyzing structures for vertical vibration induced by subway operation.

  • PDF