• Title/Summary/Keyword: Structural stress

Search Result 5,413, Processing Time 0.031 seconds

Effect of compressible membrane's nonlinear stress-strain behavior on spiral case structure

  • Zhang, Qi-Ling;Wu, He-Gao
    • Structural Engineering and Mechanics
    • /
    • v.42 no.1
    • /
    • pp.73-93
    • /
    • 2012
  • With an active structural involvement in spiral case structure (SCS) that is always the design and research focus of hydroelectric power plant (HPP), the compressible membrane sandwiched between steel spiral case and surrounding reinforced concrete was often assumed to be linear elastic material in conventional design analysis of SCS. Unfortunately considerable previous studies have proved that the foam material serving as membrane exhibits essentially nonlinear mechanical behavior. In order to clarify the effect of membrane (foam) material's nonlinear stress-strain behavior on SCS, this work performed a case study on SCS with a compressible membrane using the ABAQUS code after a sound calibration of the employed constitutive model describing foam material. In view of the successful capture of fitted stress-strain curve of test by the FEM program, we recommend an application and dissemination of the simulation technique employed in this work for membrane material description to structural designers of SCS. Even more important, the case study argues that taking into account the nonlinear stress-strain response of membrane material in loading process is definitely essential. However, we hold it unnecessary to consider the membrane material's hysteresis and additionally, employment of nonlinear elastic model for membrane material description is adequate to the structural design of SCS. Understanding and accepting these concepts will help to analyze and predict the structural performance of SCS more accurately in design effort.

A study on Development of Stress Tolerant Structural System in the Frame of Greenhouses (내재해성이 우수한 비닐하우스골조 구조시스템 개발에 관한 연구)

  • Shim, Jong-Seok;Lee, Choon-Ho
    • Journal of The Korean Digital Architecture Interior Association
    • /
    • v.12 no.1
    • /
    • pp.5-13
    • /
    • 2012
  • The frame of pipe greenhouses in Korea have been collapsed increasingly due to very weak in structure caused by the heavy snow and strong wind. In order to reduce the collapse of green houses, it is urgent to develop the new structural system in stress tolerant greenhouses. Therefore, this paper performed the structural analysis of greenhouse frame in accordance with snow loads and wind loads. Three type models in structural frame configuration of greenhouses, that is, existing type, diagrid type, and honeycomb type are selected. It was classfied the section shape of structural frames in greenhouses into arch style, standard style, and diagonal standard style. As a result of this paper, it was verified that the structural system of diagrid type is better than that of existing type against snow loads and wind loads in the frame of greenhouses.

Structural strength evaluation of Freight Car Carbody for transportation of cold-rolled coils (냉연코일 수송화차 차체의 구조 강도 평가)

  • Kwon, Sung-Tae;Kim, Jeong-Guk;Seo, Jung-Won
    • Proceedings of the KSR Conference
    • /
    • 2007.05a
    • /
    • pp.775-779
    • /
    • 2007
  • The structural strength assessment of a carbody was performed using F.E. analysis and static test to verify the structural safety of newly manufactured carbody of a freight car. The freight car for the transportation of cold-rolled coils in steel making company was designed with SS400 steel for underframe and SM490A steel for bracket. Prior to the evaluation of structural strength, commercial finite element method(FEM) software was used for the stress and structural analyses on stress distribution in a carbody of freight car. The strain gages were attached on the carbody based on the FEM results. The actual vertical loading test and horizontal compression loading test were conducted, and the stress and displacement were obtained. Finally, the structural strength of carbody was evaluated by using a engineering techniques.

  • PDF

Experimental Stress Analysis with Reflection Polariscope (반사시 광탄성 실험기를 이용한 실험응력 해석)

  • Byeon, Hui-Mun;Lee, Sun-Bok
    • 한국기계연구소 소보
    • /
    • s.10
    • /
    • pp.11-20
    • /
    • 1983
  • Photoelasticity is an experimental technique for stress and strain analysis that is particularly useful for members having complicated geometry, complicated loading conditions, or both. The principle and engineering applications of photoelastic stress analysis are briefly reviewed. Experimental stress analysis with Reflection Polariscope at KIMM Structural Mechanics Laboratory was applied to the following practices: Stress analysis of the crosshead of the structural fatigue testing machine; Experimental safety verification of domestic excavator.

  • PDF

Structural Analysis of Continuous Casting Mold (연속주조 몰드의 구조해석)

  • 원종진;이종선;홍석주
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.10 no.4
    • /
    • pp.104-110
    • /
    • 2001
  • The objective of this study is structural analysis of continuous casting mold. A two-dimensional finite element model was developed to compute the temperature distribution, thermal stress and thermal strain behavior for continuous casting mold. Structural analysis was made using thermal analysis result, utilizing transient analysis of ANSYS. This structural analysis results, many variables such as casting speed, cooling condition film coefficient, convection and load condition are considered.

  • PDF

Structural Analysis of High Pressure Injection Nozzle (고압 분사노즐의 구조해석)

  • 원종진;이종선;윤희중;김형철
    • Proceedings of the Korean Society of Machine Tool Engineers Conference
    • /
    • 2002.10a
    • /
    • pp.69-74
    • /
    • 2002
  • This study is object to structural analysis of high pressure injection nozzle. The finite element model was developed to compute the stress, strain for high pressure injection nozzle. For structural analysis using result from FEM code. This structural analysis results, many variables such as internal pressure, boundary condition, constraint condition and load condition are considered.

  • PDF

Fatigue Assessment of Load-carrying Asymmetric Double Bevel Cruciform Welded Joints using Structural Stress Approach (구조응력을 이용한 하중 전달형 십자 양면 비대칭 필렛 용접 시험편의 피로강도 평가)

  • Kim, Seong-Min;Kim, Young-Nam;Lee, Seung-Hyun;Kim, Myung-Hyun
    • Journal of Welding and Joining
    • /
    • v.30 no.6
    • /
    • pp.86-91
    • /
    • 2012
  • Fatigue tests and analyses were carried out to investigate fatigue strength and crack initiation point of load-carrying asymmetric double bevel cruciform welded joints. Mesh-insensitive structural stress approach was adopted to estimate high precise fatigue life and crack initiation point. Two different case material and weld shape were considered in this study. Results of fatigue tests and analyses were compared and discussed in consideration of applicability of structural stress approach as the reliable fatigue assessment method of cruciform welded joints.

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

Vibration and Stress Analysis for Reactor Vessel Internals of Advanced Power Reactor 1400 due to Pulsation of Reactor Coolant Pump (원자로냉각재펌프 맥동에 대한 APR1400 원자로내부구조물의 진동 및 응력 해석)

  • Kim, Kyu-Hyung;Ko, Do-Young;Kim, Sung-Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2011.10a
    • /
    • pp.221-226
    • /
    • 2011
  • The structural integrity of APR1400 reactor vessel internals has been being assessed referring the US Nuclear Regulatory Commission regulatory guide 1.20 comprehensive vibration assessment program. The program is composed of a vibration and stress analysis, a limited vibration measurement, and an inspection. This paper covers the vibration and stress analysis on the reactor vessel internals due to the pulsation of reactor coolant pump. 3-dimensional models to calculate the hydraulic loads and structural responses were built and the pressure distributions and the structural responses were predicted using ANSYS. The peak stress of the reactor vessel internals is much lower than the acceptance limit.

  • PDF

Validation of Vibration and Stress Analysis Methodology for APR1400 Reactor Vessel Internals Comprehensive Vibration Assessment Program (APR1400 원자로내부구조물 종합진동평가프로그램 진동 및 응력해석 방법론 검증)

  • Kim, Kyu Hyung;Ko, Do Young;Kim, Sung Hwan
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2012.10a
    • /
    • pp.300-305
    • /
    • 2012
  • The vibration and stress analysis program of comprehensive vibration assessment program (CVAP) is to verify theoretically the structural integrity of reactor vessel internals (RVI) and to provide the basis for selecting the locations monitored in measurement and inspection programs. This paper covers the verification of the vibration and stress analysis methodology of APR1400 RVI CVAP. The analysis methodology was developed to use 3-dimensional hydraulic and structural models with ANSYS and CFX. To validate the methodology, the hydraulic loads and structural reponses of OPR1000 were predicted and compared with the calculated and measured data in the OPR1000 RVI CVAP. Since the results predicted with this methodology were close to the measured values considerably, it was confirmed that the analysis methodology was developed properly.

  • PDF