• Title/Summary/Keyword: Structural steel

Search Result 5,845, Processing Time 0.023 seconds

Experimental study on innovative sections for cold formed steel beams

  • Dar, M.A.;Yusuf, M.;Dar, A.R.;Raju, J.
    • Steel and Composite Structures
    • /
    • v.19 no.6
    • /
    • pp.1599-1610
    • /
    • 2015
  • Cold Formed Steel members are widely used in today's construction industry. However the structural behavior of light gauge high strength cold formed steel sections characterized by various buckling modes are not yet fully understood. Because of their simple forming and easy connections, the commonly used cold formed sections for beams are C and Z. However both these sections suffer from certain buckling modes. To achieve much improved structural performance of cold formed sections for beams both in terms of strength and stiffness, it is important to either delay or completely eliminate their various modes of buckling. This paper presents various innovative sectional profiles and stiffening arrangements for cold formed steel beams which would successfully contribute in delaying or eliminating various modes of premature buckling, thus considerably improving the load carrying capacity as well as stiffness characteristics of such innovative cold formed sections compared to conventional cold formed steel sections commonly used for beams.

Strength and structural barrier function of steel channel-reinforced concrete composite slabs

  • Emori, Katsuhiko
    • Steel and Composite Structures
    • /
    • v.3 no.4
    • /
    • pp.243-260
    • /
    • 2003
  • This paper reports on the development of a new composite slab system that uses a large- lipped steel channel and reinforced concrete. The advantages of this new system are that it serves as both a structural unit and an unsupported form and it has a secondary structural barrier function. A concrete pouring test was carried out for the large-lipped steel channel. Full-scale tests were carried out to assess the flexural strength-deformation characteristics and structural mechanics of the composite slab. The barrier mechanics of the steel channel concrete element (referred to as the SC subunit) of the composite slab are examined. The test results indicate that the new composite slab has excellent strength, ductility characteristics, and a structural barrier function in its SC subunit that is highly effective against severe loading.

On The Hyperdocument As A Companion For Structural Steel Designers (철골구조설계 지침서로서의 Hyperdocument에 관한 고찰)

  • 정영식;이재연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1997.10a
    • /
    • pp.181-188
    • /
    • 1997
  • This work proposes possible use of the hyperdocument as a companion for structural steel designers and also as a part of any expert system to be used for the design of steel structures. AISC Specification for Structural Steel Buildings - Allowable Stress Design and Plastic Design, June 1, 1989-has been thoroughly hyperdocumented. Database for the most of AISC standard sections has been built for easier reference to sectional properties and even for search for the relevant sections. Hardy and wxCLIPS from AIAI, The University of Edinburgh were used as development tools. Hardy is integrated with NASA's rule-based and object-oriented language CLIPS 6.0 to enable users to rapidly develop diagram-related applications. Currently this work does not include any sophisticated rule-bases. Rather, this work will form a part of the expert systems for the steel structural design to be developed later. Nevertheless, the hyperdocument of this work will make a good companion for structural steel designers in its own right.

  • PDF

Economic Evaluation of High-Strength Steel for Structural Member Types in Building Structures (부재 종류에 따른 고강도 강재의 경제성 평가)

  • Kim, In Ho;Cho, So Hoon;Kim, Jong Ho;Lee, Chul Woo
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.2
    • /
    • pp.113-121
    • /
    • 2013
  • The structural steel produced in domestic is classified into 5 grades. For economic structural design, the structural engineers need to choose optimal steel grades for structural member types, but the related data is not sufficient. Recently, high strength steel with yield strength in 650MPa was developed in domestic. It provides structural engineers with the wider range of structural steel strength, which leads to the larger difference in economic evaluation. In this paper, the economic evaluation of high-strength steel in building structures is investigated, by applying structural steel with 235MPa, 325MPa and 650MPa in yield strength to various types of structural members, and can be used as basic data for economic structural design.

Load Transfer Mechanism of a Hybrid Beam-Column Connection System with Structural Tees

  • Kim, Sang-Sik;Choi, Kwang-Ho
    • International Journal of Concrete Structures and Materials
    • /
    • v.18 no.3E
    • /
    • pp.199-205
    • /
    • 2006
  • The composite frame system with reinforced concrete column and steel beam can be improved in its structural efficiency by complementing the shortcomings of the two systems. The system, however, has many inherent problems in practical design and construction process due to the dissimilarities of the materials. Considering these circumstance, this research aims for the development of a composite structural system which connects the steel beams to the R/C columns with higher structural safety and economy. Basically, the proposed connection system is composed of four split tees, structural angles reinforced by a stiffener, high strength steel rods, connecting plates and shear plates. Structural tests have been carried out to investigate the moment transfer mechanism 1Tom the beam flange to steel rods or connecting plates through the structural angle reinforced by a stiffener. The four prototype specimens have been tested until the flange of the beam reached a plastic state. The test results indicated that no distinct material dissimilarities between concrete and steel have been detected for the proposed hybrid beam-column connection system and that the stress transfer through the structural angle between the beam flange and steel rods or connecting plates was very encouraging.

Structural Cost Optimization for Building Frame System Using High-Strength Steel Members (고강도 강재를 사용한 건물골조방식 구조물의 구조비용 최적화)

  • Choi Sang-Hyun;Kwon Bong-Keun;Kim Sang-Bum;Seo Ji-Hyun;Kwon Yun-Han;Park Hyo-Seon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.541-548
    • /
    • 2006
  • This study presents a structural cost optimization method for building frame system using high-strength steel members. In, this optimization method, the material cost of steel member is involved in objective function to find the optimal cost of building frame systems. Genetic Algorithm is adopted to optimizer to find structural cost optimization. The proposed adapted to structural design of 3.5 stories example buildings with buildings frame systems. As a result, The proposed optimization method can be effectively adapted to cost optimization of building frame systems using high-strength steel members.

  • PDF

Research on cold-formed steel connections: A state-of-the-art review

  • Qin, Ying;Chen, Zhihua
    • Steel and Composite Structures
    • /
    • v.20 no.1
    • /
    • pp.21-41
    • /
    • 2016
  • Cold-formed steel structures are increasingly attractive due to their benefits of good mechanical performance and constructional advantages. However, this type of construction is still not fully exploited as a result of the acknowledged difficulties involved in forming construction-efficient and cost-effective connections. Furthermore, there is a lack of information on the structural behavior of the cold-formed steel connections. In this study, the research on various cold-formed steel connections was comprehensively reviewed from both fundamental and structural points of view, based on the available experimental and analytical data. It reveals that the current design codes and guidelines for cold-formed steel connections tend to focus more on the individual bearing capacity of the fasteners rather than the overall structural behavior of the connections. Significant future work remains to be conducted on the structural performance of cold-formed steel connection. In addition, extensive previous research has been carried out to propose and evaluate an economical and efficient connection system that is obtained from the conventional connecting techniques used in the hot-rolled industry. These connecting techniques may not be suitable, however, as they have been adopted from hot-rolled steel portal frames due to the thinness of the sheet in cold-formed steels. The review demonstrates that with the increasing demand for cold-formed steel constructions throughout the world, it is crucial to develop an efficient connection system that can be prefabricated and easily assembled on site.

Additive 2D and 3D performance ratio analysis for steel outrigger alternative design

  • Lee, Dongkyu
    • Steel and Composite Structures
    • /
    • v.20 no.5
    • /
    • pp.1133-1153
    • /
    • 2016
  • In this article, an additive performance ratio method using structural analysis of both 2D and 3D is introduced to mitigate the complexity of work evaluating structural performances of numerous steel outrigger alternatives in multi-story buildings, especially high-rise buildings. The combined structural analysis process enables to be the design of economic, safe, and as constructional demanding structures by exploiting the advantages of steel, namely: excellent energy dissipation and ductility. First the approach decides the alternative of numerous steel outriggers by a simple 2D analysis module and then the alternative is evaluated by 3D analysis module. Initial structural analyses of outrigger types are carried out through MIDAS Gen 2D modeling, approximately, and then the results appeal structural performance and lead to decide some alternative of outrigger types. ETABS 3D modeling is used with respect to realization and evaluation of exact structural behaviors. The approach reduces computational burden in compared to existing concepts such as full 3D analysis methods. The combined 2D and 3D tools are verified by cycle and displacement tests including comprehensive nonlinear dynamic simulations. The advantages and limitations of the Additive Performance Ratio Approach are highlighted in a case study on a high rise steel-composite building, which targets at designing the optimized alternative to the existing original outrigger for lateral load resisting system.

A Fundamental Study on the Effects of Pavement Stiffness to the Structural Behavior of Orthotropic Steel Plate Deck (포장체의 강성이 강상판의 거동에 미치는 영향에 관한 기초연구)

  • Lee, Hwan-Woo;Jung, Du-Hwoe
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.7 no.1
    • /
    • pp.191-198
    • /
    • 2003
  • The pavement stiffness is scarcely used in structural analysis to design the superstructure of bridge. It is reasonable not to consider it in the case of asphalt concrete pavement over concrete deck because the pavement stiffness compared with the concrete deck plate can be ignored. However, sometimes, the pavement materials have a similar amount of elastic modulus to concrete and are applied to the orthotropic steel deck plate which has relatively less stiffness compared with the concrete deck plate. In this paper, the steel plate deck of a real bridge project was analyzed by considering the pavement stiffness by linear elastic FEM. It was assumed that a perfect bond between the steel plate deck and the pavement exited. The results indicated that the structural behavior of the orthotropic steel deck plate can be estimated enough to affect the evaluation result of structural capacity in some cases. Therefore, the investigations by experimental tests and more advanced numerical model are indispensible in figuring the design formula for considering the effects of pavement stiffness in the structural analysis of an orthotropic bridge.

Material Properties of Structural Steel used in Modern Historical Heritage of Busan and Gyeongsang in the 1930-1940s (1930-40년대 부산·경상지역의 근대 역사문화유산에 사용된 강재의 재료적 특성)

  • Ahn, Jae-Cheol;Song, Jong-Mok
    • Journal of architectural history
    • /
    • v.23 no.6
    • /
    • pp.39-46
    • /
    • 2014
  • In this study, we evaluated the chemical and physical properties of structural steel, which is the most basic material for steel structures and reinforcement concrete structures in modern period. We theorized the technical data for the research of technical history of modern heritage structures by analyzing the product system and its quality control of structural steel used in modern historical heritages. The results of this study are as follow; first, the rounded bars were used in most of modern heritage structures. But in the case of Waegwan railroad bridge, the deformed bars were used in spit of not using in Japan after the great earthquake of Kantou. Second, the structural steel was good in terms of quality control, but It has brittle properties because it was not manufactured by heat treatment process.