• 제목/요약/키워드: Structural protein (SP)

검색결과 24건 처리시간 0.084초

Bacillus 미생물과 활성슬러지의 포자화에 따른 체외고분자물질 생성에 관한 연구 (Production of Extracellular Polymeric Substances by Sporulation of Bacillus sp. and Activated Sludge)

  • 이상호
    • 상하수도학회지
    • /
    • 제25권1호
    • /
    • pp.85-93
    • /
    • 2011
  • The structural components of microorganism are quite related to the toxin and environmental conditions. The vegetative and dormant cells are quite affected by the physical and chemical environments to survive and they will be dormant when they are in the extreme environment. The mechanism to activate the microorganisms however, is not well defined yet in the area of activation state and sporulation state through the analysis of EPS. Other than that even the main mechanism of prior to acquisition of analysis values is not well understood. Therefore, what kind of specific environment to affect the activation and sporulation will be discussed through the analysis of the extracellular polymeric substances(EPS). EPS are a high molecular weight mixture of polymers presenting both outside of cells and interior of microbial aggregates. They are a major complex materials in microbial aggregation for sustaining them together in a three dimensional matrix. Three commonly used extraction methods were applied to this study their effectiveness and quantification in extracting EPS from several Bacillus microorganisms and activated sludge. Three extraction methods used for this study are regular centrifugation with formaldehyde (RCF), Steaming, and EDTA extraction. The results of EPS contents such as the quantitative proteins, carbohydrates and the ratio of protein versus carbohydrate from the several species with the several specific methods showed in this research. This study aims to get comparable results of the quantitative production of EPS and the effectiveness of sedimentation for Bacillus microorganisms and activated sludge from several wastewater treatment plans. The results revealed that the protein amount extracted was the highest by the Steaming method of three extraction methods before sporulation and the carbohydrate amount extracted was the highest by the RCA method of three extraction methods after sporulation. The higher amount of protein compared with carbohydrate from Bacillus microorganisms affected higher sedimentation efficiency, however it could not be found the relation between the EPS production and sedimentation efficiency for the activated sludge.

Overexpression of the SPP2 gene of saccharomyces cerevisiae and production of antibodiesd to Spp2p

  • Park, Kwang-Hark;Lea, Ho-Zoo;L. Woolford;Kim, Kyung-Hoon
    • Journal of Microbiology
    • /
    • 제33권3호
    • /
    • pp.201-207
    • /
    • 1995
  • We have previously reported that SPP2 gene product of yeast Saccharomyces cerevisiae is involved in the pre-mRNA splicing. To investigate the rol ein the splicing pathway of the Spp2p protein, the SPP2 gene was overexpressed in Escherichia coli and polyclonal antibodies to Spp2p were generated from rabbits. First, a DNA fragment containing the SPP2 GENE without its promoter was subcloned into an E. coli expression vector, pKK233-3. The resulting recombinant plasmid pBQ14 contained an IPTG inducible tac promoter and the SPP2 structural gene. Overexpression of the SPP2 gene was achieved by additionof 0.1 to 1.0 mM IPTG to a logarithmic culture of E. coli JM103(pBQ14) for 90 min at 37.deg.C. Sequence of N-terminal 15 amino acids of the overproduced protein was well matched to the deduced one from the SPP2 reading frame. Then, polyclonal antibodies were generated from rabbits immunized with gel-purified SppSp protein. These antibodies reacted specifically with the Spp2p protein extracted from yeast cells expressing the SPP2 gene to a great extent. The antibodies could also block the activity of yeast splicing extracts.

  • PDF

Kinetic and Spectral Investigations on $Ca^{2+}$ - and Sr$^{2+}$ -containing Methanol Dehydrogenases

  • Kim, Si-Wouk;Kim, Chun-Sung;Lee, Jung-Sup;Koh, Moon-Joo;Yang, Song-Suk;Duine, Johannis-A.;Kim, Young-Min
    • Journal of Microbiology
    • /
    • 제35권3호
    • /
    • pp.200-205
    • /
    • 1997
  • Bothl $Ca^{2+}$ and Sr$^{2+}$-containing methanol dehydrogenases (MDH) were purified to homogeneity with yields of 48% and 42%, respectively, from Methylabacillus methanolovorus sp. strain SK5. Most of the biochemical and structural properties were similar to each other. However, some differences were found: (1) although the overall shape of the absorption spectrum of Sr$^{2+}$-MDH was very similar to that of $Ca^{2+}$-MDH, the absorption intensity originating from the cofactor in Sr$^{2+}$. MDH was higher than that in $Ca^{2+}$-MDH. Small blue shift of the maximum was also observed. These are probably due to a difference in redox state of the cofactors in $Ca^{2+}$ and Sr$^{2+}$-MDH; (2) Sr$^{2+}$-MDH was more heat-stable than $Ca^{2+}$-MDH above 56$^{\circ}C$; (3) the V$_{max}$ values for the methanol-dependent activities of Sr$^{2+}$- and $Ca^{2+}$-MDH in the presence of 3 mM KCN were 2.038 and 808 nmol/mg protein/min, respectively. In addition, the $K_{m}$ values of Sr$^{2+}$ and $Ca^{2+}$ MDH for methanol were 12 and 21 $\mu$M, respectively; (4) the endogenous activity of $Ca^{2+}$-MDH was more sensitive than that of Sr$^{2+}$-MDH in the presence of cyanide; (5) Diethyl pyrocarbonate treatment increased the enzyme activities of $Ca^{2+}$- and Sr$^{2+}$-MDH 4.2- and 1.4-folds, respectively. These results indicate that Sr$^{2+}$ stabilizes the structural conformation and enhances the activity of MDH more than $Ca^{2+}$.

  • PDF

(S)-ketoprofen ethyl ester에 대해 높은 광학활성이 있는 Pseudomonas fluorescens KCTC 1767 유례 esterase의 PCR-Cloning과 정제

  • 최기섭;김지연;김근중;유연우
    • 한국생물공학회:학술대회논문집
    • /
    • 한국생물공학회 2001년도 추계학술발표대회
    • /
    • pp.652-655
    • /
    • 2001
  • The comparative study of enzymes that catalyze a similar reactions but have different substrate spectrum and/or stereospecificity is a powerful approach to understanding the reaction mechanism between the relative enzymes, and it was also an useful tool to cloning the related enzyme, without the typical cloning from DNA library of genomic pools. For this purpose, we conducted an approach that the comparison at the molecular and protein level of esterases, from various sources including a previously identified (S)-stereospecific esterase of Pseudomonas sp. ES1. As expected, we found an esterase family genes that shared a high similarity at the protein and genetic level in the identical genus Pseudomonad. The striking structural and biochemical identity strongly suggested the family genes to be an identical one. We, hence, aligned the family genes and designated a degenerated primer for PCR-cloning using six Pseudomonas strains as templates. As a result, a recombinant esterase from Pseudomonas fluorescens KCTC 1767 was cloned and high-level expressed with high selectivity to (R,S)-ketoprofen ethyl ester. The enzyme exhibited a high ester-hydrolyzing activity to (S)-ketoprofen but did not hydrolyzed the opposite stereoisomer. Further characteristics were discussed in our presentation.

  • PDF

X-ray Crystallographic Study of Archaerhodopsin

  • Enami, Nobuo;Okumura, Hideo;Kouyama, Tsutomu
    • Journal of Photoscience
    • /
    • 제9권2호
    • /
    • pp.320-322
    • /
    • 2002
  • Archaerhodopsin (aR), a light-driven proton pump found in HaIonubrum sp. aus-l, was crystallized into an octahedral crystal belonging to the space group P4$_3$2$_1$2. It is shown that aR is composed of7 helical segments and an anti-para1leI ${\beta}$ sheet. The main-chain sIrudure of aR is nearly identical to that of bacteriorhodopsin, but a significant structural difference is observed in the protein surface, especially at lipid binding sites.

  • PDF

Cellular and Molecular Pathology of Fungi on Plants Studied by Modern Electron Microscopy

  • Sanwald, Sigrun-Hippe
    • 한국식물병리학회:학술대회논문집
    • /
    • 한국식물병리학회 1995년도 Proceedings of special lectures on Molecular Biological Approaches to Plant Disease National Agricultural Science and Technology Institute Suwon, Korea
    • /
    • pp.27-53
    • /
    • 1995
  • In plant pathology there is an increasing necessity for improved cytological techniques as basis for the localization of cellular substances within the dynamic fine structure of the host-(plant)-pathogen-interaction. Low temperature (LT) preparation techniques (shock freezing, freeze substitution, LT embedding) are now successfully applied in plant pathology. They are regarded as important tools to stabilize the dynamic plant-pathogen-interaction as it exists under physiological conditions. - The main advantage of LT techniques versus conventional chemical fixation is seen in the maintenance of the hydration shell of molecules and macromolecular structures. This results in an improved fine structural preservation and in a superior retention of the antigenicity of proteins. - A well defined ultrastructure of small, fungal organisms and large biological samples such as plant material and as well as the plant-pathogen (fungus) infection sites are presented. The mesophyll tissue of Arabidopsis thaliana is characterized by homogeneously structured cytoplasm closely attached to the cell wall. From analyses of the compatible interaction between Erysiphe graminis f. sp. hordei on barley (Hordeum vulgare), various steps in the infection sequence can be identified. Infection sites of powdery mildew on primary leaves of barley are analysed with regard to the fine structural preservation of the haustoria. The presentation s focussed on the ultrastructure of the extrahaustorial matrix and the extrahaustorial membrane. - The integration of improved cellular preservation with a molecular analysis of the infected host cell is achieved by the application of secondary probing techniques, i.e. immunocytochemistry. Recent data on the characterization of freeze substituted powdery mildew and urst infected plant tissue by immunogold methodology are described with special emphasis on the localization of THRGP-like (threonine-hydrxyproline-rich glycoprotein) epitopes. Infection sites of powdery mildew on barley, stem rust as well as leaf rust (Puccinia recondita) on primary leaves of wheat were probed with a polyclonal antiserum to maize THRGP. Cross-reactivity with the anti-THRGP antiserum was observed over the extrahaustorial matrix of the both compatible and incompatible plant-pathogen interactions. The highly localized accumulation of THRGP-like epitopes at the extrahaustorial host-pathogen interface suggests the involvement of structural, interfacial proteins during the infection of monocotyledonous plants by obligate, biotrophic fungi.

  • PDF

Detection and Characterization of a Lytic Pediococcus Bacteriophage from the Fermenting Cucumber Brine

  • Yoon, Sung-Sik;Baprangou-Poueys Roudolphe;Jr Fred Breidt;Fleming Henry P.
    • Journal of Microbiology and Biotechnology
    • /
    • 제17권2호
    • /
    • pp.262-270
    • /
    • 2007
  • Of the twelve lytic bacteriophages recovered from five different fermenting cucumber tanks that were inoculated with Pediococcus sp. LA0281, a lytic phage, ${\phi}ps05$, was characterized in the present study. The plaques were mostly clear and round-shaped on the lawn of starter strain, indicating lytic phage. Overall appearance indicated that it belongs to the Siphoviridae family or Bradley's group B1, with a small isometric head and a flexible noncontractile tail with swollen base plate. The average size was found to be 51.2 nm in head diameter and 11.6 nm wide ${\times}$ 129.6 nm long for the tail. The single-step growth kinetics curve showed that the eclipse and the latent period were 29 min and 34 min, respectively, and an average burst size was calculated to be 12 particles per infective center. The optimum proliferating temperature ($35^{\circ}C$) was slightly lower than that of cell growth ($35\;to\;40^{\circ}C$). The structural proteins revealed by SDS-PAGE consisted of one main protein of 33 kDa and three minor proteins of 85, 58, and 52 kDa. The phage genome was a linear double-stranded DNA without cohesive ends. Based on the single and double digestion patterns obtained by EcoRI, HindIII, and SalI, the physical map was constructed. The overall size of the phage genome was estimated to be 24.1 kb. The present report describes the presence of a lytic phage active against a commercial starter culture Pediococcus sp. LA0281 in cucumber fermentation, and a preliminary study characterizes the phage on bacterial successions in the process of starter-added cucumber fermentation.

프로테아제 처리가 모발의 염색성 및 형태적 특성에 미치는 영향 (Effect of Protease on the Morphological Properties and Dyeability of Human Hair)

  • 김홍희;권태종
    • 한국염색가공학회지
    • /
    • 제20권2호
    • /
    • pp.59-65
    • /
    • 2008
  • The tannin acid and the enzymes have been used in order to improve the ruggedness in laundry and the absorption of dyes and pigments in the textile industry for several years. The enzyme processing on the protein fiber minimizes the damage of the entire fiber and improves the dyeability by effectively modifying only the hydrophobic surface. This study tried out the structural observation by applying the Castanea crenata sieb. et. zucc. containing abundant tannin to the hair dyeing as the natural dyeing pigment along with Protease of Rhizopus sp. The dyeability was improved as compared to the dyeing using only the synthetic tanning and iron mordant. When the depth of pigment was higher in accordance with the surface observation, the enzyme dissolution had impact on dyeing and so the keratin layer on the hair surface. Accordingly, it was found that the appropriate depth was between 0.01 and 0.03%. It was estimated that 0.1% protease would treated within 30min. Consequently, it would cause the good reaction with the functional group of tannin pigment.

Expression of Rotavirus Capsid Proteins VP6 and VP7 in Mammalian Cells Using Semliki Forest Virus-Based Expression System

  • Choi, Eun-Ah;Kim, Eun;Oh, Yoon-I;Shin, Kwang-Soon;Kim, Hyun-Soo;Kim, Chul-Joong
    • Journal of Microbiology and Biotechnology
    • /
    • 제12권3호
    • /
    • pp.463-469
    • /
    • 2002
  • Rotaviruses are the world-wide leading causative agents of severe dehydrating gastroenteritis in young children and animals. The outer capsid glycoprotein VP7 and inner capsid glycoprotein VP6 of rotaviruses are highly antigenic and immunogenic. An SFV-based expression system has recently emerged as a useful tool for heterologous protein production in mammalian cells, exhibiting a much more efficient performance compared to other gene expression systems. Accordingly, the current study adopted an SFV-based expression system to express the VP7 of a group A human rotavirus from a Korean isolate, and the VP6 of a group B bovine rotavirus from a Korean isolate, in mammalian cells. The genes of the VP6 and VP7 were inserted into the SFV expression vector pSFV-1. The RNA was transcribed in vitro from pSFV-VP6 and pSFV-VP7 using SP6 polymerase. Each RNA was then electroporated into BHK-21 cells along with pSFV-helper RNA containing the structural protein gene without the packaging signal. The expression of VP6 and VP7 in the cytoplasm was then detected by immunocytochemistry. The recombinant virus was harvested by ultracentrifugation and examined under electron microscopy. After infecting BHK-21 cells with the defective viruses, the expressed proteins were separated by SDS-PAGE and analyzed by a Western blot. The results indicate that an SFV-based expression system fur the VP6 and VP7 of rotaviruses is an efficient tool for developing a diagnostic kit and/or preventive vaccine.

Crystal Structure and Biochemical Analysis of a Cytochrome P450 Steroid Hydroxylase (BaCYP106A6) from Bacillus Species

  • Ki-Hwa Kim;Hackwon Do;Chang Woo Lee;Pradeep Subedi;Mieyoung Choi;Yewon Nam;Jun Hyuck Lee;Tae-Jin Oh
    • Journal of Microbiology and Biotechnology
    • /
    • 제33권3호
    • /
    • pp.387-397
    • /
    • 2023
  • Cytochrome P450 (CYP) is a heme-containing enzyme that catalyzes hydroxylation reactions with various substrate molecules. Steroid hydroxylases are particularly useful for effectively introducing hydroxyl groups into a wide range of steroids in the pharmaceutical industry. This study reports a newly identified CYP steroid hydroxylase (BaCYP106A6) from the bacterium Bacillus sp. and characterizes it using an in vitro enzyme assay and structural investigation. Bioconversion assays indicated that BaCYP106A1 catalyzes the hydroxylation of progesterone and androstenedione, whereas no or low conversion was observed with 11β-hydroxysteroids such as cortisol, corticosterone, dexamethasone, and prednisolone. In addition, the crystal structure of BaCYP106A6 was determined at a resolution of 2.8 Å to investigate the configuration of the substrate-binding site and understand substrate preference. This structural characterization and comparison with other bacterial steroid hydroxylase CYPs allowed us to identify a unique Arg295 residue that may serve as the key residue for substrate specificity and regioselectivity in BaCYP106A6. This observation provides valuable background for further protein engineering to design commercially useful CYP steroid hydroxylases with different substrate specificities.