• 제목/요약/키워드: Structural performance optimization

검색결과 580건 처리시간 0.029초

실수형 Genetic Algorithm에 의한 최적 설계 (A Real Code Genetic Algorithm for Optimum Design)

  • 양영순;김기화
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1995년도 봄 학술발표회 논문집
    • /
    • pp.187-194
    • /
    • 1995
  • Traditional genetic algorithms(GA) have mostly used binary code for representing design variable. The binary code GA has many difficulties to solve optimization problems with continuous design variables because of its targe computer core memory size, inefficiency of its computing time, and its bad performance on local search. In this paper, a real code GA is proposed for dealing with the above problems. So, new crossover and mutation processes of read code GA are developed to use continuous design variables directly. The results of real code GA are compared with those of binary code GA for several single and multiple objective optimization problems. As results of comparisons, it is found that the performance of the real code GA is better than that of the binary code GA, and concluded that the rent code GA developed here can be used for the general optimization problem.

  • PDF

An improved particle swarm optimizer for steel grillage systems

  • Erdal, Ferhat;Dogan, Erkan;Saka, Mehmet Polat
    • Structural Engineering and Mechanics
    • /
    • 제47권4호
    • /
    • pp.513-530
    • /
    • 2013
  • In this paper, an improved version of particle swarm optimization based optimum design algorithm (IPSO) is presented for the steel grillage systems. The optimum design problem is formulated considering the provisions of American Institute of Steel Construction concerning Load and Resistance Factor Design. The optimum design algorithm selects the appropriate W-sections for the beams of the grillage system such that the design constraints are satisfied and the grillage weight is the minimum. When an improved version of the technique is extended to be implemented, the related results and convergence performance prove to be better than the simple particle swarm optimization algorithm and some other metaheuristic optimization techniques. The efficiency of different inertia weight parameters of the proposed algorithm is also numerically investigated considering a number of numerical grillage system examples.

Vibration Based Structural Damage Detection Technique using Particle Swarm Optimization with Incremental Swarm Size

  • Nanda, Bharadwaj;Maity, Damodar;Maiti, Dipak Kumar
    • International Journal of Aeronautical and Space Sciences
    • /
    • 제13권3호
    • /
    • pp.323-331
    • /
    • 2012
  • A simple and robust methodology is presented to determine the location and amount of crack in beam like structures based on the incremental particle swarm optimization technique. A comparison is made for assessing the performance of standard particle swarm optimization and the incremental particle swarm optimization technique for detecting crack in structural members. The objective function is formulated using the measured natural frequency of the intact structure and the frequency obtained from the finite element simulation. The outcomes of the simulated results demonstrate that the developed method is capable of detecting and estimating the extent of damages with satisfactory precision.

Controller optimization with constraints on probabilistic peak responses

  • Park, Ji-Hun;Min, Kyung-Won;Park, Hong-Gun
    • Structural Engineering and Mechanics
    • /
    • 제17권3_4호
    • /
    • pp.593-609
    • /
    • 2004
  • Peak response is a more suitable index than mean response in the light of structural safety. In this study, a controller optimization method is proposed to restrict peak responses of building structures subject to earthquake excitations, which are modeled as partially stationary stochastic process. The constraints are given with specified failure probabilities of peak responses. LQR is chosen to assure stability in numerical process of optimization. Optimization problem is formulated with weightings on controlled outputs as design variables and gradients of objective and constraint functions are derived. Full state feedback controllers designed by the proposed method satisfy various design objectives and output feedback controllers using LQG also yield similar results without significant performance deterioration.

위상최적설계를 이용한 H형강 부재의 스티프너 형상탐색 (Shape Extraction of Stiffeners of H-beam using Topologically Structural Optimization)

  • 정원식;반 티엔 탄;이동규
    • 한국공간구조학회논문집
    • /
    • 제23권1호
    • /
    • pp.15-23
    • /
    • 2023
  • In this work, we deal with the feasibility of structural topology optimization for beam designs using retrofits that optimally allocates the reinforcement to the web under the condition that designers set bolt regions for H-beams of different dimensions. Mean compliance or minimal strain energy is considered for the optimization. Volume fraction is given to the design space to assign appropriate steel material quantities. The purpose of this study is to evaluate optimal shapes of stiffeners with the maximum rigidity that improves the axial and shear performance of the H-beam and to satisfy a given safety design standard of H-beam and stiffeners in case arbitrary load effect and resistances. Finally, the effectiveness of stiffness-based topology optimization on stiffeners is verified with several practical applicable examples.

한국형 고속전철용 판토그라프 구조설계 검증 및 설계 최적화 (Structual Design Verification and Design Optimization of Pantograph for Korean Very High Speed Train)

  • 정경렬;김휘준;백진성;박수홍
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2001년도 추계학술대회논문집 II
    • /
    • pp.1229-1234
    • /
    • 2001
  • There are three items, which are panhead displacement, tilting angle of pan head, required moment of main shaft, which representing kinematic performance of pantograph. Kinematic variables effective on kinematic performance are length of each components and installation angle, In this study, cost function is defined with 3 items, By this cost function, length of thrust rod was optimized. Finite element analysis was used to consider structural soundness. Finite element model was qualified by comparison between analysis result with experiment result. By qualified F.E, model various severe condition was simulated to consider structural soundness.

  • PDF

성능함수법을 이용한 신뢰성기반 위상 최적설계 (Reliability-Based Topology Optimization Using Performance Measure Approach)

  • 안성호;조선호
    • 한국전산구조공학회논문집
    • /
    • 제23권1호
    • /
    • pp.37-43
    • /
    • 2010
  • 본 논문에서는 선형 구조물에 대해 성능함수법을 이용하여 신뢰성기반 위상 최적설계 기법을 개발하였다. 구조물을 라이즈너-민들린(Ressiner-Mindlin) 판 요소로 분할하였으며, 각 요소의 재료 물성치를 설계변수로 사용하였다. 설계변수와 임의변수의 효율적인 설계민감도를 구하기 위하여 연속체 역학에 기초한 해석기법 중 보조변수법(Adjont variable method)을 사용하였다. 또한 확률론적 제약조건을 평가하기 위해서 성능함수법(Performance measure approach)을 사용하였으며 변위 제약조건을 두어 위상 최적설계 문제를 구성하였다. 이 때 재료 물성치와 하중을 불확실 변수로 고려하였으며 수치적 예제를 통하여 본 논문에서 제안한 최적설계 방법론을 기존의 결정론적 방법, 안전계수법(Safety factor approach), 최악조건법(Worst case approach) 등과 비교하여 그 타당성을 검증하였다.

Conceptual design of ultra-high performance fiber reinforced concrete nuclear waste container

  • Othman, H.;Sabrah, T.;Marzouk, H.
    • Nuclear Engineering and Technology
    • /
    • 제51권2호
    • /
    • pp.588-599
    • /
    • 2019
  • This research presents a structural design of high-level waste (HLW) container using ultra-high performance fiber reinforced concrete (UHP-FRC) material. The proposed design aims to overcome the drawbacks of the existing concrete containers which are heavy, difficult to fabricate, and expensive. In this study, the dry storage container (DSC) that commonly used at Canadian Nuclear facilities is selected to present the proposed design. The design has been performed such that the new UHP-FRC alternative has a structural stiffness equivalent to the existing steel-concrete-steel container under various loading scenarios. Size optimization technique is used with the aim of maximizing stiffness, and minimizing the cost while satisfying both the design stresses and construction requirements. Then, the integrity of the new design has been evaluated against accidental drop-impact events based on realistic drop scenarios. The optimization results showed: the stiffness of the UHP-FRC container (300 mm wall thick) is being in the range of 1.35-1.75 times the stiffness of existing DSC (550 mm wall thick). The use of UHP-FRC leads to decrease the container weight by more than 60%. The UHP-FRC container showed a significant enhancement in performance in comparison to the existing DSC design under considered accidental drop impact scenarios.

진화퍼지 근사화모델에 의한 비선형 구조시스템의 최적설계 (Optimal Design of Nonlinear Structural Systems via EFM Based Approximations)

  • 이종수;김승진
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 춘계학술대회 학술발표 논문집
    • /
    • pp.122-125
    • /
    • 2000
  • The paper describes the adaptation of evolutionary fuzzy model ins (EFM) in developing global function approximation tools for use in genetic algorithm based optimization of nonlinear structural systems. EFM is an optimization process to determine the fuzzy membership parameters for constructing global approximation model in a case where the training data are not sufficiently provided or uncertain information is included in design process. The paper presents the performance of EFM in terms of numbers of fuzzy rules and training data, and then explores the EFM based sizing of automotive component for passenger protection.

  • PDF

해양자동채염기의 최소중량설계를 위한 메타모델 기반 근사최적화 (Approximate Optimization Based on Meta-model for Weight Minimization Design of Ocean Automatic Salt Collector)

  • 송창용
    • 융합정보논문지
    • /
    • 제11권1호
    • /
    • pp.109-117
    • /
    • 2021
  • 본 논문에서는 해양자동채염기의 구조중량 최소화를 위해 구조설계에 대한 메타모델 기반 근사최적화를 수행하였다. 구조해석은 해양자동채염기의 초기설계에 대한 강도성능을 평가하기 위해 유한요소법을 이용하여 수행하였다. 구조해석에서는 설계하중조건에 대한 강도성능을 평가하였다. 최적설계문제는 강도성능 제한조건을 만족하면서 중량을 최소화할 수 있는 구조두께의 설계변수를 결정하도록 정식화하였다. 근사최적화에는 반응표면법, 크리깅 모델 및 체비쇼프 직교 다항식의 메타모델을 사용하였다. 수치계산 특성을 검토하기 위해 근사최적화 결과는 비근사최적화 결과와 비교하였다. 근사최적화에 사용된 메타모델 중 체비쇼프 직교 다항식이 해양자동채염기의 구조설계에 가장 적합한 최적설계 결과를 나타내었다.