• Title/Summary/Keyword: Structural height

Search Result 1,075, Processing Time 0.022 seconds

Principles of Stone Elevation Formation for Walls and Wells in the Silla Dynasty from 5th to 7th Centuries (5~7세기 신라시대 성곽과 우물에 대한 석축입면조형원리)

  • Kang, Seong-Bin;Seo, Seong-Hyeok;Jung, Tae-Yeol
    • Journal of the Korean Institute of Traditional Landscape Architecture
    • /
    • v.41 no.1
    • /
    • pp.47-55
    • /
    • 2023
  • In this study, the following conclusions were drawn by analyzing the size, proportion, shape, angle, distribution, etc. of stones in order to identify the principles of facade molding of stonework of the 5th to 7th centuries of the Silla Dynasty. First, the uniformity of the size of the stones of the stone foundations of the Silla Dynasty was low at -0.8 to 4.1. This means that stones of various sizes were used, from small stones to large stones. In addition, the distribution of large stones in stonework of the Silla Dynasty appeared evenly regardless of height. This was common in the stonework of the Silla Dynasty, regardless of structural classification such as wells and mountain fortresses. It is thought that the Silla people did not only pursue practicality and efficiency in stone construction, but also considered design elements. Second, the proportional deviation of the stones of the stone walls of the Silla Dynasty was high, ranging from 0.861 to 1.515. This means that the stonework of the Silla Dynasty did not use only long flagstone-shaped stones, but used a mixture of long and short stones. Third, the shape average of the stones of the stonework of the Silla Dynasty was low at 0.45, and the shape deviation was high at the maximum of 0.15. This means that the stones as a whole have irregular shapes, and each stone has a high difference in shape. Fourth, the angle deviation of the stones of the Silla Dynasty was 4.3 to 16.2, and the average angle was 2. This means that the angle of each stone on the stone axis of the Silla Dynasty is tilted to the left and right. Fifth, there was no correlation between stone size, slenderness ratio, shape, and angle in the stone axes of the Silla Dynasty. In the case of stone axes in the Joseon Dynasty, there was a positive correlation between stone size and slenderness, and a negative correlation between stone size and shape. It can be said that the stones of the Joseon Dynasty were relatively standardized, but the Silla Dynasty showed the beauty of moderation by keeping the nature of the material and becoming one with the material.

Surrogate Model-Based Global Sensitivity Analysis of an I-Shape Curved Steel Girder Bridge under Seismic Loads (지진하중을 받는 I형 곡선거더 단경간 교량의 대리모델 기반 전역 민감도 분석)

  • Jun-Tai, Jeon;Hoyoung Son;Bu-Seog, Ju
    • Journal of the Society of Disaster Information
    • /
    • v.19 no.4
    • /
    • pp.976-983
    • /
    • 2023
  • Purpose: The dynamic behavior of a bridge structure under seismic loading depends on many uncertainties, such as the nature of the seismic waves and the material and geometric properties. However, not all uncertainties have a significant impact on the dynamic behavior of a bridge structure. Since probabilistic seismic performance evaluation considering even low-impact uncertainties is computationally expensive, the uncertainties should be identified by considering their impact on the dynamic behavior of the bridge. Therefore, in this study, a global sensitivity analysis was performed to identify the main parameters affecting the dynamic behavior of bridges with I-curved girders. Method: Considering the uncertainty of the earthquake and the material and geometric uncertainty of the curved bridge, a finite element analysis was performed, and a surrogate model was developed based on the analysis results. The surrogate model was evaluated using performance metrics such as coefficient of determination, and finally, a global sensitivity analysis based on the surrogate model was performed. Result: The uncertainty factors that have the greatest influence on the stress response of the I-curved girder under seismic loading are the peak ground acceleration (PGA), the height of the bridge (h), and the yield stress of the steel (fy). The main effect sensitivity indices of PGA, h, and fy were found to be 0.7096, 0.0839, and 0.0352, respectively, and the total sensitivity indices were found to be 0.9459, 0.1297, and 0.0678, respectively. Conclusion: The stress response of the I-shaped curved girder is dominated by the uncertainty of the input motions and is strongly influenced by the interaction effect between each uncertainty factor. Therefore, additional sensitivity analysis of the uncertainty of the input motions, such as the number of input motions and the intensity measure(IM), and a global sensitivity analysis considering the structural uncertainty, such as the number and curvature of the curved girders, are required.

The Comparison of the Ultra-Violet Radiation of Summer Outdoor Screened by the Landscaping Shade Facilities and Tree (조경용 차양시설과 수목에 의한 하절기 옥외공간의 자외선 차단율 비교)

  • Lee, Chun-Seok;Ryu, Nam-Hyong
    • Journal of the Korean Institute of Landscape Architecture
    • /
    • v.41 no.6
    • /
    • pp.20-28
    • /
    • 2013
  • The purpose of this study was to compare the ultra-violet(UV) radiation under the landscaping shade facilities and tree with natural solar UV of the outdoor space at summer middays. The UVA+B and UVB were recorded every minute from the $20^{th}$ of June to the $26^{th}$ of September 2012 at a height of 1.1m above in the four different shading conditions, with fours same measuring system consisting of two couple of analog UVA+B sensor(220~370nm, Genicom's GUVA-T21GH) and UVB sensor(220~320nm, Genicom's GUVA-T21GH) and data acquisition systems(Comfile Tech.'s Moacon). Four different shading conditions were under an wooden shelter($W4.2m{\times}L4.2m{\times}H2.5m$), a polyester membrane structure ($W4.9m{\times}L4.9m{\times}H2.6m$), a Salix koreensis($H11{\times}B30$), and a brick-paved plot without any shading material. Based on the 648 records of 17 sunny days, the time serial difference of natural solar UVA+B and UVB for midday periods were analysed and compared, and statistical analysis about the difference between the four shading conditions was done based on the 2,052 records of daytime period from 10 A.M. to 4 P.M.. The major findings were as follows; 1. The average UVA+B under the wooden shelter, the membrane and the tree were $39{\mu}W/cm^2$(3.4%), $74{\mu}W/cm^2$(6.4%), $87{\mu}W/cm^2$(7.6%) respectively, while the solar UVA+B was $1.148{\mu}W/cm^2$. Which means those facilities and tree screened at least 93% of solar UV+B. 2. The average UVB under the wooden shelter, the membrane and the tree were $12{\mu}W/cm^2$(5.8%), $26{\mu}W/cm^2$(13%), $17{\mu}W/cm^2$(8.2%) respectively, while the solar UVB was $207{\mu}W/cm^2$. The membrane showed the highest level and the wooden shelter lowest. 3. According to the results of time serial analysis, the difference between the three shaded conditions around noon was very small, but the differences of early morning and late afternoon were apparently big. Which seems caused by the matter of the formal and structural characteristics of the shading facilities and tree, not by the shading materials itself. In summary, the performance of the four landscaping shade facilities and tree were very good at screening the solar UV at outdoor of summer middays, but poor at screening the lateral UV during early morning and late afternoon. Therefore, it can be apparently said that the more delicate design of shading facilities and big tree or forest to block the additional lateral UV, the more effective in conditioning the outdoor space reducing the useless or even harmful radiation for human activities.

Dispersion of Standing Stones at Noseongsan(Mt.Noseong) and Aspect of the Stone Decorated Garden(Soo-suk Jeongwon) at Chongsuk-Sa(Chongsuk Buddhist Temple) in Nonsan City (논산 노성산(魯城山)의 입석(立石) 분포와 총석사(叢石寺) 수석(樹石)의 정원적 면모)

  • Rho, Jae Hyun;Huh, Joon;Jang, Il Young
    • Korean Journal of Heritage: History & Science
    • /
    • v.43 no.1
    • /
    • pp.160-189
    • /
    • 2010
  • This study has been designed to grasp the present situation, shapes and meaning of the standing stones and rock pillars in the whole area of Noseong Mountain Fortress in Nonsan City which have never been academically reported yet. Accordingly, the research was carried out to grasp the spatial identity of Noseong Mt. and Noseong Mountain Fortress and the dispersion of standing stones scattered around inside and outside Noseong Mountain Fortress, while the shapes and structural characteristics of stones were investigated and analyzed focusing on Chongsuk Temple, which was considered to have the highest density of standing stones and greatest values for preservation as a cultural property. In consideration of the reference to the 'Top Sa' (tower temple) at the 'Bul Woo Jo' (Article about Buddhism Houses) of 'Shinjoong Dongguk Yeoji Seungram', theoretical existence of the temple according to surveying investigation, and the excavation records of roof tile pieces with the name of 'Gwan Eum Temple', it is presumed that there had been a Buddhist sanctum inside the fortress and it could be connected to the carved letters, 'Chongsuk Temple'. According the observation survey, the 6th place of standing stones among many other places inside the fortress shows that Chongsuk Temple appears to have the strong characteristics of artificially constructed space in consideration of the size of trees and stones, the composite trend of tree and stone composition, and trace of the adjacent well and strand and the construction of stairway leading to the stone gate. Along with the constellation of the Big Dipper carved on a rock at the same space, the stones, on which the letters of 'Shinseonam', 'Chilseongam' and 'Daejangam' were carved, including 'Chongsuksa', and the carved statue of Buddha, which was assumed to be Avalokitesvara Guan Yin, have offered clue which make it possible to infer that the space was a space for Chilseong and Mountain god(Folk Belief) that had originated from the combination of Buddhism, Taoism and folk religion. According to the actual measurement of standing stones at Chonsuk Temple, it was identified that there were big differences in height among 24 stones in total, ranging from 402~29cm and the averaged distance between each stone appeared to be 23.6cm. And the shape of stones appeared to be standing or flat, and various stones such as mountain-like stones and Buddha-like stones were placed in a special arrangement or assorted arrangement, but the direction of the stones had a consistency pointing to the west. And comparing to the trace of construction of ZEN Landscape Garden well known in the country, the three flat stones except for the standing and shaped stones appeared to have the shape of meditation statue, which is the typical formational factors of a ZEN Landscape Garden, on the basis of formational technique of stones. Among them, the flat stone facing the Buddhist saint statue, was formed by way of symbolization of three-mountain stone, which was assumed to be an offering stone for sacrificial food rather than carrying out ZEN Meditation. In consideration of the formation of standing stones at Chong-suk Temple, which was carried out in the composite stoning method based using the scalene triangle with ratio of 3:5:7 in order to seek the in-depth beauty based on the stone statues of three Buddhas where the three factors such as heaven, earth and humans are embodied in the elevated or flat formation, the stones at Chongsuk Temple and the space seemed to the trace of contracted garden construction that was formed with stones for a temple, so that could be used for ZEN meditation.

Anatomical and Physical Properties of Pitch Pine (Pinus rigida Miller) - The Characteristics of Stem, Branch, Root and Topwood - (리기다소나무(Pinus rigida Miller)의 목재해부학적(木材解剖學的) 및 물리학적성질(物理學的性質)에 관(關)한 연구(硏究) - 간(幹), 지(枝), 근(根), 초두목(梢頭木)의 특성(特性)을 중심(中心)으로 -)

  • Lee, Phil Woo
    • Journal of Korean Society of Forest Science
    • /
    • v.16 no.1
    • /
    • pp.33-62
    • /
    • 1972
  • Pitch pine (Pinus rigida Miller) in Korea has become one of the major silvicultural species for many years since it was introduced from the United States of America in 1907. To attain the more rational wood utilization basical researches on wood properties are primarily needed, since large scale of timber production from Pitch Pine trees has now been accomplishing in the forested areast hroughout the country. Under the circumustances, this experiment was carried out to study the wood anatomical, physical and mechanical properties of Pitch Pine grown in the country. Materials used in this study had been prepared by cutting the selected pitch pine trees from the Seoul National University Forests located in Suwon. To obtain and compare the anatomical and physical properties of the different parts of tree such as stem, branch, top and rootwood, this study had been divided into two categories (anatomical and physical). For the anatomical study macroscopical and microscopical features such as annual ring, intercellular cannal, ray, tracheid, ray trachid, ray parenchyma cell and pit etc. were observed and measured by the different parts (stem, branch, root and topwood) of tree. For the physical and mechanical properties the moisture content of geen wood, wood specific gravity, shrinkage, compression parallel to the grain, tension parallel and perpendicular to the grain, radial and tangential shear, bending, cleavage and hardness wree tested. According to the results this study may be concluded as follows: 1. The most important comparable features in general properties of wood among the different parts of tree were distinctness and width of annual ring, transition from spring to summerwood, wood color, odor and grain etc. In microscopical features the sizes of structural elements of wood were comparable features among the parts of tree. Among their features, length, width and thickness of tracheids, resin ducts and ray structures were most important. 2. In microscopical features among the different parts of tree stem and topwood were shown simillar reults in tissues. However in rootwood compared with other parts on the tangential surface distinctly larger ray structures were observed and measured. The maximum size of unseriate ray was attained to 27 cell ($550{\mu}$) height in length and 35 microns in width. Fusiform rays were formed occasionally the connected ray which contain one or several horizontal cannals. Branchwood was shown the same features like stemwood but the measured values were very low in comparing with other parts of tree. 3. Trachid length measured among the different parts of tree were shown largest in stem and shortest in branchwood. In comparing the tracheid length among the parts the differences were not shown only between stem and rootwood, but shown between all other parts of tree. Trachid diameters were shown widest in rootwood and narrowest in branchwood, and the differences among the different parts were not realized. Wall thickness were shown largest value in rootwood and smallest in branchwood, and the differences were shown between root and top or branchwood, and between stem and branch or top wood, but not shown between other parts of tree. 4. Moisture contents of green wood were shown highest in topwood and lowest in heartwood of stem. The differences among the different parts were recognized between top or heartwood and other parts of tree, but not between root and branchwood or root and sapwood. 5. Wood specific gravities were shown highest in stem and next order root and branchwood, but lowest in topwood. The differences were shown clearly between stemwood and other parts of tree, but not root and branchwood. However the significant difference is realized as most lowest value in topwood. 6. In compression strength parallel to the grain compared among the different parts of tree at the 14 percent of moisture content, highest strength was appeared in stem, next order branch and rootwood, but lowest in topwood. 7. In bending strength compared among the different parts of tree at the 14 percent of moisture content clearly highest strength was shown in branchwood, next order stem and root, but lowest in topwood. Though the branchwood has lower specific gravity than stemwood it was shown clearly high bending strength.

  • PDF