• Title/Summary/Keyword: Structural health monitoring

Search Result 1,079, Processing Time 0.027 seconds

A Study on Optimal Sensor Placement Using Sensitivity Analysis (민감도 해석을 이용한 센서의 최적 위치 선정에 관한 연구)

  • Son, In-Soo;Lee, Doo-Ho
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.21 no.3
    • /
    • pp.241-247
    • /
    • 2011
  • Although intensive development continues on innovative sensor systems, there is still considerable uncertainty in deciding on the number of sensors required and their locations in order to obtain adequate information on structural behavior. This paper is concerned with the sensor locations on a beam-structure for prognostic structural health monitoring. The purpose of this study is to investigate how to determine optimal sensor placement(OSP) from the sensitivity information of a known failure mode. The sensitivity of the forced vibration response of a beam to the variation of stiffness due to a crack is calculated analytically and used to determine the optimal sensor locations for the specified failure mode. The results of this method compared with the results of different OSP methods. The results have shown that the proposed method on optimal sensor placement is very effective in structural health monitoring.

Investigation of modal identification and modal identifiability of a cable-stayed bridge with Bayesian framework

  • Kuok, Sin-Chi;Yuen, Ka-Veng
    • Smart Structures and Systems
    • /
    • v.17 no.3
    • /
    • pp.445-470
    • /
    • 2016
  • In this study, the Bayesian probabilistic framework is investigated for modal identification and modal identifiability based on the field measurements provided in the structural health monitoring benchmark problem of an instrumented cable-stayed bridge named Ting Kau Bridge (TKB). The comprehensive structural health monitoring system on the cable-stayed TKB has been operated for more than ten years and it is recognized as one of the best test-beds with readily available field measurements. The benchmark problem of the cable-stayed bridge is established to stimulate investigations on modal identifiability and the present paper addresses this benchmark problem from the Bayesian prospective. In contrast to deterministic approaches, an appealing feature of the Bayesian approach is that not only the optimal values of the modal parameters can be obtained but also the associated estimation uncertainty can be quantified in the form of probability distribution. The uncertainty quantification provides necessary information to evaluate the reliability of parametric identification results as well as modal identifiability. Herein, the Bayesian spectral density approach is conducted for output-only modal identification and the Bayesian model class selection approach is used to evaluate the significance of different modes in modal identification. Detailed analysis on the modal identification and modal identifiability based on the measurements of the bridge will be presented. Moreover, the advantages and potentials of Bayesian probabilistic framework on structural health monitoring will be discussed.

Vibration-based structural health monitoring using large sensor networks

  • Deraemaeker, A.;Preumont, A.;Reynders, E.;De Roeck, G.;Kullaa, J.;Lamsa, V.;Worden, K.;Manson, G.;Barthorpe, R.;Papatheou, E.;Kudela, P.;Malinowski, P.;Ostachowicz, W.;Wandowski, T.
    • Smart Structures and Systems
    • /
    • v.6 no.3
    • /
    • pp.335-347
    • /
    • 2010
  • Recent advances in hardware and instrumentation technology have allowed the possibility of deploying very large sensor arrays on structures. Exploiting the huge amount of data that can result in order to perform vibration-based structural health monitoring (SHM) is not a trivial task and requires research into a number of specific problems. In terms of pressing problems of interest, this paper discusses: the design and optimisation of appropriate sensor networks, efficient data reduction techniques, efficient and automated feature extraction methods, reliable methods to deal with environmental and operational variability, efficient training of machine learning techniques and multi-scale approaches for dealing with very local damage. The paper is a result of the ESF-S3T Eurocores project "Smart Sensing For Structural Health Monitoring" (S3HM) in which a consortium of academic partners from across Europe are attempting to address issues in the design of automated vibration-based SHM systems for structures.

Structural health monitoring of innovative civil engineering structures in Mainland China

  • Li, Hong-Nan;Li, Dong-Sheng;Ren, Liang;Yi, Ting-Hua;Jia, Zi-Guang;LI, Kun-Peng
    • Structural Monitoring and Maintenance
    • /
    • v.3 no.1
    • /
    • pp.1-32
    • /
    • 2016
  • This paper describes the backgrounds, motivations and recent history of structural health monitoring (SHM) developments to various types of engineering structures. Extensive applications of SHM technologies in bridges, high-rise buildings, sport avenues, offshore platforms, underground structures, dams, etc. in mainland China are summarily categorized and listed in tables. Sensors used in implementations, their deployment, damage identification strategies if applicable, preliminary monitoring achievements and experience are presented in the lists. Finally, existing problems and promising research efforts in civil SHM are discussed, highlighting challenges and future trends.

Practicalities of structural health monitoring

  • Shrive, P.L.;Brown, T.G.;Shrive, N.G.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.357-367
    • /
    • 2009
  • Structural Health Monitoring (SHM), particularly remote monitoring, is an emerging field with great potential to help infrastructure owners obtain more and up-to-date knowledge of their structures. The methodology could provide supplemental information to guide the frequency and extent of visual inspections, and the possible need for maintenance. The instrumentation for a SHM system needs to be developed with longevity and the objectives for the system in mind. Sensors need to be selected for reliability and durability, sited where they provide the maximum information for the objectives, and where they can be accessed and replaced should the need arise over the monitoring period. With the rapid changes now occurring with sensors and software, flexibility needs to be in place to allow the system to be upgraded over time. Damage detection needs to be considered in terms of the type of damage that needs to be detected, informing maintenance requirements, and how detection can be achieved. Current vibration analysis techniques appear not yet to have achieved the necessary sensitivity for that purpose. Societal factors will influence the design of a SHM system in terms of the sophistication of the instrumentation and methodology employed.

Real time crack detection using mountable comparative vacuum monitoring sensors

  • Roach, D.
    • Smart Structures and Systems
    • /
    • v.5 no.4
    • /
    • pp.317-328
    • /
    • 2009
  • Current maintenance operations and integrity checks on a wide array of structures require personnel entry into normally-inaccessible or hazardous areas to perform necessary nondestructive inspections. To gain access for these inspections, structure must be disassembled and removed or personnel must be transported to remote locations. The use of in-situ sensors, coupled with remote interrogation, can be employed to overcome a myriad of inspection impediments stemming from accessibility limitations, complex geometries, the location and depth of hidden damage, and the isolated location of the structure. Furthermore, prevention of unexpected flaw growth and structural failure could be improved if on-board health monitoring systems were used to more regularly assess structural integrity. A research program has been completed to develop and validate Comparative Vacuum Monitoring (CVM) Sensors for surface crack detection. Statistical methods using one-sided tolerance intervals were employed to derive Probability of Detection (POD) levels for a wide array of application scenarios. Multi-year field tests were also conducted to study the deployment and long-term operation of CVM sensors on aircraft. This paper presents the quantitative crack detection capabilities of the CVM sensor, its performance in actual flight environments, and the prospects for structural health monitoring applications on aircraft and other civil structures.

Wavelet-based feature extraction for automatic defect classification in strands by ultrasonic structural monitoring

  • Rizzo, Piervincenzo;Lanza di Scalea, Francesco
    • Smart Structures and Systems
    • /
    • v.2 no.3
    • /
    • pp.253-274
    • /
    • 2006
  • The structural monitoring of multi-wire strands is of importance to prestressed concrete structures and cable-stayed or suspension bridges. This paper addresses the monitoring of strands by ultrasonic guided waves with emphasis on the signal processing and automatic defect classification. The detection of notch-like defects in the strands is based on the reflections of guided waves that are excited and detected by magnetostrictive ultrasonic transducers. The Discrete Wavelet Transform was used to extract damage-sensitive features from the detected signals and to construct a multi-dimensional Damage Index vector. The Damage Index vector was then fed to an Artificial Neural Network to provide the automatic classification of (a) the size of the notch and (b) the location of the notch from the receiving sensor. Following an optimization study of the network, it was determined that five damage-sensitive features provided the best defect classification performance with an overall success rate of 90.8%. It was thus demonstrated that the wavelet-based multidimensional analysis can provide excellent classification performance for notch-type defects in strands.

Structural novelty detection based on sparse autoencoders and control charts

  • Finotti, Rafaelle P.;Gentile, Carmelo;Barbosa, Flavio;Cury, Alexandre
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.647-664
    • /
    • 2022
  • The powerful data mapping capability of computational deep learning methods has been recently explored in academic works to develop strategies for structural health monitoring through appropriate characterization of dynamic responses. In many cases, these studies concern laboratory prototypes and finite element models to validate the proposed methodologies. Therefore, the present work aims to investigate the capability of a deep learning algorithm called Sparse Autoencoder (SAE) specifically focused on detecting structural alterations in real-case studies. The idea is to characterize the dynamic responses via SAE models and, subsequently, to detect the onset of abnormal behavior through the Shewhart T control chart, calculated with SAE extracted features. The anomaly detection approach is exemplified using data from the Z24 bridge, a classical benchmark, and data from the continuous monitoring of the San Vittore bell-tower, Italy. In both cases, the influence of temperature is also evaluated. The proposed approach achieved good performance, detecting structural changes even under temperature variations.

An image-based deep learning network technique for structural health monitoring

  • Lee, Dong-Han;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • v.28 no.6
    • /
    • pp.799-810
    • /
    • 2021
  • When monitoring the structural integrity of a bridge using data collected through accelerometers, identifying the profile of the load exerted on the bridge from the vehicles passing over it becomes a crucial task. In this study, the speed and location of vehicles on the deck of a bridge is reconfigured using real-time video to implicitly associate the load applied to the bridge with the response from the bridge sensors to develop an image-based deep learning network model. Instead of directly measuring the load that a moving vehicle exerts on the bridge, the intention in the proposed method is to replace the correlation between the movement of vehicles from CCTV images and the corresponding response by the bridge with a neural network model. Given the framework of an input-output-based system identification, CCTV images secured from the bridge and the acceleration measurements from a cantilevered beam are combined during the process of training the neural network model. Since in reality, structural damage cannot be induced in a bridge, the focus of the study is on identifying local changes in parameters by adding mass to a cantilevered beam in the laboratory. The study successfully identified the change in the material parameters in the beam by using the deep-learning neural network model. Also, the method correctly predicted the acceleration response of the beam. The proposed approach can be extended to the structural health monitoring of actual bridges, and its sensitivity to damage can also be improved through optimization of the network training.

Analysis of the buckling failure of bedding slope based on monitoring data - a model test study

  • Zhang, Qian;Hu, Jie;Gao, Yang;Du, Yanliang;Li, Liping;Liu, Hongliang;Sun, Shangqu
    • Geomechanics and Engineering
    • /
    • v.28 no.4
    • /
    • pp.335-346
    • /
    • 2022
  • Buckling failure is a typical slope instability mode that should be paid more attention to. It is difficult to provide systematic guidance for the monitoring and management of such slopes due to unclear mechanism. Here we examine buckling failure as the potential instability mode for a slope above a railway tunnel in southwest China. A comprehensive model test system was developed that can be used to conduct buckling failure experiments. The displacement, stress, and strain of the slope were monitored to document the evolution of buckling failure during the experiment. Monitoring data reveal the deformation and stress characteristics of the slope with different slipping mass thicknesses and under different top loads. The test results show that the slipping mass is the main subject of the top load and is the key object of monitoring. Displacement and stress precede buckling failure, so maybe useful predictors of impending failure. However, the response of the stress variation is earlier than displacement variation during the failure process. It is also necessary to monitor the bedrock near the slip face because its stress evolution plays an important role in the early prediction of instability. The position near the slope foot is most prone to buckling failure, so it should be closely monitored.