• Title/Summary/Keyword: Structural foam

Search Result 199, Processing Time 0.019 seconds

Design and Fabrication of Stratified Microwave Absorbing Structure Consisted of Glass/Epoxy - Resistive Sheet - Foam

  • Choi, Won-Ho;Shin, Jae-Hwan;Song, Tae-Hoon;Lee, Won-Jun;Kim, Chun-Gon
    • Composites Research
    • /
    • v.27 no.6
    • /
    • pp.225-230
    • /
    • 2014
  • In this study, a novel microwave absorber which consists of a structural part, a resistive sheet, and a low dielectric layer is proposed. Unlike the conventional Salisbury screen, a newly proposed absorber is capable of a range of absorbing performance, from narrowband to broadband. In the case of the narrowband absorber, the fabricated absorber with optimized design parameters has a strong resonance at 9.25 GHz and reflection loss of -44 dB with satisfying the -10 dB absorption in whole X-band (8.2 GHz~12.4 GHz). For the broadband absorber design, the reflectivity was minimized in the considered frequency ranges. The designed absorber showed two weak resonances near 6.5 GHz and 16.5 GHz and satisfied the -10 dB absorption from C-band to Ku-band (4 GHz~18 GHz). The measured reflection loss of fabricated absorber was well matched with simulation results, though the measurement was only performed on X-band. For the Salisbury screen to be capable of broadband absorption, it should be stacked multiply in a structure known as the Jaumann absorber. However, for the microwave absorber presented here, broadband as well as narrowband capabilities can be implemented without a change of the structure.

Impact Behaviors of Stitched Sandwich Composites Under Low Energy Impact Using Drop Weight Impact Tester (고낙하추 충격시험기를 이용한 스티칭된 샌드위치 복합재의 저에너지 충격거동 연구)

  • 윤성호;이상진;조세현
    • Composites Research
    • /
    • v.12 no.5
    • /
    • pp.54-64
    • /
    • 1999
  • This study investigated the impact behaviors of the stitched sandwich composites under the low energy impact by the use of drop weight impact tester. These sandwich composites condidted of the glass fabric faces with a urethane foam core. The upper face and the lower face were stitched to combinr through the core thickness direction using the polyester reinforcements. Four types of the stitched sandwich composites, each having a different core thickness, were tested to determine the effects of the core thickness. The impact conditions were changes with the variations of the mass and drop height of the impact tup. The test results showed that the core thickness and the impact condidtions such as the drop height and the mass of the impact tup affected the impact force, the contact time, and the strain behaviors of the stitched sandwich composites. The stitched sandwich composites are able to avert the damage and also maintain the structural integrity even thouth the presence of the damage owing to the through-the-thickness reinforcements. However, it is important to improve the wetting ability of the stitched reinforcements so that the conventional structures are substituted for the stitched sandwich composites effectively.

  • PDF

Shoot multiplication kinetics and hyperhydric status of regenerated shoots of gladiolus in agar-solidified and matrix-supported liquid cultures

  • Gupta, S. Dutta;Prasad, V.S.S.
    • Plant Biotechnology Reports
    • /
    • v.4 no.1
    • /
    • pp.85-94
    • /
    • 2010
  • In vitro shoot regeneration of gladiolus in three different culture systems, viz., semi-solid agar (AS), membrane raft (MR), and duroplast foam liquid (DF) cultures was evaluated following the kinetics of shoot multiplication and hyperhydricity at optimized growth regulator combinations. Compared to the AS system, matrixsupported liquid cultures enhanced shoot multiplication. The peak of shoot multiplication rate was attained at 18 days of incubation in the MR and DF systems, whereas the maximum rate in the AS system was attained at 21 days. An early decline in acceleration trend was observed in liquid cultures than the AS culture. The hyperhydric status of the regenerated shoots in the different culture systems was assessed in terms of stomatal attributes and antioxidative status. Stomatal behavior appeared to be normal in the AS and MR systems. However, structural anomaly of stomata such as large, round shaped guard cells with damage in bordering regions of stomatal pores was pronounced in the DF system along with a relatively higher $K^+$ ion concentration than in the AS and MR systems. Antioxidative status of regenerated shoots was comparable in the AS and MR systems, while a higher incidence of oxidative damages of lipid membrane as evidenced from malondialdehyde and ascorbate content was observed in the DF system. Higher oxidative stress in the DF system was also apparent by elevated activities of superoxide dismutase, ascorbate peroxidase, and catalase. Among the three culture systems, liquid culture with MR resulted in maximum shoot multiplication with little or no symptoms of hyperhydricity. Shoots in the DF system were more prone to hyperhydricity than those in the AS and MR systems. The use of matrix support such as membrane raft as an interface between liquid medium and propagating tissue could be an effective means for rapid and efficient mass propagation with little or no symptoms of hyperhydricity.

A Study on Optimum Design Analysis of Bolt Locations for Metal Joint Parts of Railway Composite Bogie Frames using Sub-modeling Method (서브모델링 기법을 이용한 철도차량 복합재 대차프레임의 금속재 체결부 볼트 위치 최적화 해석 연구)

  • Kim, Jun-Hwan;Shin, Kwang-Bok;Ko, Hee-Young;Kim, Jung-Seok
    • Composites Research
    • /
    • v.23 no.6
    • /
    • pp.19-25
    • /
    • 2010
  • This paper describes the optimum design of bolt locations for metal joint parts of railway bogie frame made of glass fiber/epoxy 4-harness satin woven laminate composite and PVC foam core. The optimum design analysis was done by sub-problem approximation method using Ansys Parameter Design Language(APDL). The sub-modeling method was introduced to conduct the detailed recalculation for the only target parts and reduce calculating time. The structural analysis for composite bogie frame was performed according to JIS E 4207. The results showed that the optimum design analysis using sub-modeling method was able to obtain faster and more precise results than that of the entire model by the control of mesh size for the target parts, and the maximum Von-Mises stress has been reduced in comparison with its original dimensions due to the optimum design of bolt locations.

Polyoxyethylene Tocopheryl Ethers; A Series of Novel Surfactants from Tocopherol for Functional Cosmetics (토코페롤에서 유도된 기능성 화장품용의 새로운 계면 활성제)

  • 김영대;김창규
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.18 no.1
    • /
    • pp.1-41
    • /
    • 1992
  • A new and unique class of nonionic surfactants was synthesized by reacting biological a-tocopherol with ethylene oxide for functional cosmetics. The structures were confirmed by Hl-UMR, FT-lR, TLC and elemental analysis. POV and conjugated diene value study for EPO showed POE(n)TE had antioxidative effect similar to tocopheryl acetate Protective effect on cell membrane in photohemolysis of POE(5)TE, POE(10)TE and POE(18)TE were slightly lower than tocopherol but higher than nonoxynol-12, and POE(10)TE had UV absorption power comparable with tocopherol and homosalate. Biological activity of the hydrophobic group of the new surfactants make them unique and different from those of conventional nonionic surfactants Systematic safety evaluations of POE(n)TEs on the skin and eye proved that they are as safe as tocopherol. The results of physicochemical study showed POE(10)TE had the lowest CMC value, POE(18)TE had the maximum surface tension reduction and the highest foam volume and POE(n)TEs had various HLB values by the degree of ethoxylation. The test resul Is of technological and practical applications of these surfactants for cosmetics showed some POE(n)TEs were superior to conventional surfactants. POE(5)TE in W/O emulsions, POE(10)TE and POE(12)TE in O/W emulsions, POE(12)TE in dispersions, POE(18)TE in solubilizations and POE(50)TE in gelations were shown to be excellent which was considered due to the structural characteristic and formation of liquid crystals of POE(n)TEs. By the development and applications of these excel lent multi-functional surfactants, innovative functional cosmetics were successfully formulated.

  • PDF

A Study on Quality Characteristic and Stability Improvement of Vibration-Proof Polyurethane Mat (방진용 폴리우레탄 매트의 물리적 특성과 안정성 향상에 관한 연구)

  • Woo, Kyung-Ha;Lee, Chang-Ho
    • Journal of the Korea Safety Management & Science
    • /
    • v.21 no.1
    • /
    • pp.1-7
    • /
    • 2019
  • Along with industrial development, various architectural structures have become bigger and higher, leading to an expansion in the size and capacity of construction equipment. And with the development of public transportation, the use of subways as a means of transportation in the city center is increasing, so that vibrations and structural noises are emerging as a new environmental issue. Considering that architectural structures may be used from several decades to hundreds of years after the time of construction, they can be seen as semi-permanent. Due to changes in the vibration-proof polyurethane mats installed in the foundation of these structures, settling may occur and vibration reduction may become inadequate. Therefore, in view of service life, it is necessary to have a high-level standard of reliability and stability. In accordance with this, the Floating Floor System, which uses soft polyurethane foam and can be constructed within a relatively short period of time, has excellent vibration resistant characteristics. It is presented as a great alternative solution to the issue of vibrations caused by subways, railways and building structures. At present, vibration-proof polyurethane mats have been developed up to the same product level as in other advanced countries. However, in the construction of structure foundations, the physical properties of this product and its shape incur changes. If they are installed as such in the structure of a building, it may cause significant impact on stability, requiring that this cause be urgently identified and improved.

Engineering Characteristics of Light-weight Foamed CLSM using Coal Ash According to Final Mixing Time and Dilution Ratio (석탄회를 활용한 경량기포 저강도 고유동화재의 최종비빔시간과 희석비에 따른 공학적 특성)

  • Lee, Jong Hwi;Na, Jeong Hum;Lee, Chang Ki;Chun, Byung Sik
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.1C
    • /
    • pp.17-25
    • /
    • 2012
  • CLSM (Controlled Low Strength Material) using coal ash, which has the advantages of self-leveling, self-compacting, flowability, easy re-excavation, has been developed. In this study, CLSM additionally mixed with foaming agent for structural backfill material, aimed at lightness of materials, was developed called light-weight foamed CLSM. As the basic study of this material, to determine the optimum final mixing time and dilution ratio of existing light-weight foamed CLSM, flow, slurry unit weight and unconfined compressive strength test according to each impact factor were performed at the standard mix proportion. As the results of tests, CASE N (Final mixing time 4 min, dilution ratio 2%), CASE O (Final mixing time 3 min, foam agents ratio 3%, dilution ratio 2%) were satisfied with the standard of flow test (above 20cm), slurry unit weight test (12~15 $kN/m^3$) and unconfined compressive strength test (800 kPa~1200 kPa). These results will indicate the standard optimum final mixing time and dilution ratio of light-weight foamed CLSM for structural backfill.

Behavior of Hybrid Stud under Compressive Load (복합스터드의 압축 좌굴 거동)

  • Lee, Sang Sup;Bae, Kyu Woong
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.609-619
    • /
    • 2004
  • An investigation was conducted on the activities around Europe in order to solve the problem of the thermal bridging of steel studs, which had caused a significant disadvantage. This study included the following: diminishing the contact area between the studs and the sheathing, lengthening the heat transfer route, replacing the steel web with a less conductive material, and placing foam insulation in locations where the thermal shorts are most critical. Although energy efficiency is usually the focus of such foreign cases because their stud application is mostly limited to low-rise residential buildings, both structural and thermal performance are taken into consideration in this study because these target middle-story buildings. A hybrid stud composed of steel and polymer was also developed. This hybrid stud, which is 150 SL in size, is made of a galvanized steel sheet (SGC58) and a glass fiber reinforced polymer (GFRP) withepoxy bonding. A total of 32 specimens were manufactured. Its parameters comprise two types of connection detail,s: the thickness of steel (1.0mm and 1.2mm) and of the GFRP (4mm-4ply and 6mm-6ply), and the ratio of the length to the depth (L/D = 3, 6, 9, 12). Steel stud specimens with the same conditions were compared to the hybrid stud. The test revealed that in the case of the steel specimen with a thickness of 1.0mm, the maximum load of hybrid studs increased an average of 1.62 times comparedto that of the steel stud. In the case of the steel specimen with a thickness of 1.2mm, on the other hand, the average increase was 1.46times. All specimens showed full composite action until the collapse.

Structural and Photocatalytic Properties of TiO2 Thin Film Coated Glass Beads (유리알에 코팅된 TiO2 박막의 구조 및 광촉매 특성)

  • Ji Eun, Jeong;Chang-Yong, Lee
    • Applied Chemistry for Engineering
    • /
    • v.34 no.1
    • /
    • pp.30-35
    • /
    • 2023
  • The glass bead surface was coated using a TiO2 sol, after which dry-treated (TB) and calcined (TBc) samples were prepared. Photocatalytic degradation of methylene blue and toluene, as well as characterization of the TiO2 thin films, were carried out. The TiO2 thin film of the TB sample had the same shape as the sponge foam, according to FE-SEM, XPS, and FTIR analyses, and contained both amorphous and crystalline TiO2. On the other hand, crystalline TiO2 was mainly present in the TiO2 thin film of the TBc sample, and needle-shaped particles and tiny ones were mixed. The adsorption capacity for methylene blue and the degradation rate of the TBc sample were less than 10 % compared with those of the TB sample, and the adsorption capacity and degradation rate of the TBc sample decreased similarly as the amount of TiO2 coating increased. The amount of toluene adsorption for the TBc sample (46 mg/g) was smaller than that of the TB sample with the same coating amount, but the degradation rate was similar. In the case of the TB sample, the degradation rate for toluene decreased less than the adsorption capacity as the amount of TiO2 coating increased. This result is considered to be because, in the non-calcined TB sample, the active site reduction of the crystalline particles occurred less and the specific surface area of the amorphous texture decreased as the amount of TiO2 coating increased.