• Title/Summary/Keyword: Structural flood mitigation plan

Search Result 4, Processing Time 0.022 seconds

A Method for Selecting a Structural Optimal Flood Mitigation Plan Using Analytic Hierarchy Process (계층화분석기법을 통한 구조물적 홍수방어 최적대안 선정 방안 연구)

  • Lee, Jeong-Ho;Jun, Young-Joon;Ahn, Jae-Hyun;Kim, Tae-Woong
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.9 no.3
    • /
    • pp.117-126
    • /
    • 2009
  • Various dimensions of watershed structural/non-structural planning can be applied in comprehensive flood mitigation plan in a river basin. Especially structural counterplans have very broad and diverse nature as flood control facilities. It is not easy to find the optimum alternative to maximize the ability of a basin to reduce flood risk using a combination of structural counterplans. In addition, there is no standard for evaluating the performance of structural counterplans and for selecting optimal combination of them. This study focused on how to select the best alternative of a comprehensive watershed structural plan from various flood defense alternative candidates. By introducing an analytic hierarchy process, we would like to show how we decide the best alternative using standard worksheets developed in this study for economics and policy evaluation, and Expert Choice 11.5, which calculates weights for evaluation items. Based on the results from this study, we would like to suggest the best practice of a standardized watershed plan for flood protection.

Flood Mitigation Planing for a Basin Using a Decision Tree Model (의사결정나무모형을 이용한 유역내 구조적 홍수방어 대안 도출)

  • Byeon, Sungho;Kang, Hyunjin;Han, Jeongwoo;Kim, Tae-Woong
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.28 no.1B
    • /
    • pp.33-40
    • /
    • 2008
  • Intensive rainfalls in wet season (June~September) result in serious flood damage which is about 95% of natural hazard in Korea. Recently, in order to cope with repeated flood hazard, comprehensive flood control plans have been carried out in large basins in Korea. The plans suggest structural alternative plans for flood mitigation as well as non-structural plans. In this study, a practical method using a decision tree was developed to systematically allocate structural facilities for flood control, which maximizes the flood control capacity in a basin. This study also presents a practical guidance to organize structural defensive alternatives for a comprehensive flood control plan in a large basin.

Integrated Approach for Watershed Management in an Urban Area (도시 유역 관리를 위한 통합적인 접근방법)

  • Lee, Kil-Seong;Chung, Eun-Sung;Kim, Young-Oh
    • Journal of Korea Water Resources Association
    • /
    • v.39 no.2 s.163
    • /
    • pp.161-178
    • /
    • 2006
  • Heathcote (1998) identified a systematic, seven-step approach to general watershed planning and management. It consists of 1) understanding watershed components and processes, 2) identifying and ranking problems to be solved, 3) setting clear and specific goals, 4) developing a list of management options, 5) eliminating infeasible options 6) testing the effectiveness of remaining feasible options, and 7) developing the final options. In this study the first five steps of that process were applied to the Anyangcheon watershed in Korea, which experiences streamflow depletion, frequent flood damages, and poor water quality typical of highly urbanized watersheds. This study employed four indices: Potential Flood Damage(PFD), Potential Streamflow Depletion(PSD), Potential Water Quality Deterioration(PWQD) and Watershed Evaluation Index(WEI) to identify and quantify problems within the watershed. WEI is the integration index of the others. Composite programming which is a method of multi-criteria decision making is applied for the calculation of PSD, PWQD and WEI (Step 2). The primary goal of the study is to secure instreamflow in the Anyangcheon during dry seasons. The second management goals of flood damage mitigation and water quality enhancement are also set (Step 3). Management options include not only structural measures that can alter the existing conditions, but also nonstructural measures that rely on changes in human behavior or management practices (Step 4). Certain management options which are not technically, economically, and environmentally feasible, are eliminated (Step S). Therefore, this study addresses a Pre-feasibility study, which established a master plan using Steps 1 through 5.