• Title/Summary/Keyword: Structural elements

Search Result 2,832, Processing Time 0.033 seconds

Transition membrane elements with drilling freedom based on mixed-type formulation (Mixed 형태의 정식화에 기초한 회전자유도를 가진 변이 평면요소)

  • 최창근;이완훈
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.8-15
    • /
    • 1993
  • The transition membrane elements with drilling freedom have been developed. The functionals for the linear problem, in which the drilling rotations are introduced as independent variables, have been presented by Hughes & Bressi. And 4-node membrane elements with drilling degrees of freedom were developed by Ibrahimbegovic. The transition elements can be efficiently used in modelling the in-plane structures, in particular, where the stress concentration exists. A modified Gaussian quadrature adopted to evaluate the stiffness matrices of these transition elements which have slope discontinuity of displacement within the elements. Detailed numerical studies show the excellent performance of the transition elements.

  • PDF

A Comparative Study on the Displacement Behaviour of Triangular Plate Elements (삼각형 판 요소의 변위 거동에 대한 비교 연구)

  • 이병채;이용주;구본웅
    • Computational Structural Engineering
    • /
    • v.5 no.2
    • /
    • pp.105-118
    • /
    • 1992
  • Static performance was compared for the triangular plate elements through some numerical experiments. Four Kirchhoff elements and six Mindlin elements were selected for the comparison. Numerical tests were executed for the problems of rectangular plates with regular and distorted meshes, rhombic plates, circular plates and cantilever plates. Among the Kirchhoff 9 DOF elements, the discrete Kirchhoff theory element was the best. Element distortion and the aspect ratio were shown to have negligible effects on the displacement behaviour. The Specht's element resulted in better results than the Bergan's but it was sensitive to the aspect ratio. The element based on the hybrid stress method also resulted in good results but it assumed to be less reliable. Among the linear Mindlin elements, the discrete shear triangle was the best in view of reliability, accuracy and convergence. Since the thin plate behaviour of it was as good as the DKT element, it can be used effectively in the finite element code regardless of the thickness. As a quadratic Mindlin element, the MITC7 element resulted in best results in almost all cases considered. The results were at least as good as those of doubly refined meshes of linear elements.

  • PDF

Experimental study on laterally restrained steel columns with variable I cross sections

  • Cristutiu, Ionel-Mircea;Nunes, Daniel Luis;Dogariu, Adrian Ioan
    • Steel and Composite Structures
    • /
    • v.13 no.3
    • /
    • pp.225-238
    • /
    • 2012
  • Steel structural elements with web-tapered I cross section, are usually made of welded thin plates. Due to the nonrectangular shape of the element, thin web section may be obtained at the maximum cross section height. The buckling strength is directly influenced by lateral restraining, end support and initial imperfections. If no lateral restraints, or when they are not effective enough, the global behaviour of the members is characterized by the lateral torsional mode and interaction with sectional buckling modes may occur. Actual design codes do not provide a practical design approach for this kind of elements. The paper summarizes an experimental study performed by the authors on a relevant number of elements of this type. The purpose of the work was to evaluate the actual behaviour of the web tapered beam-columns when applying different types of lateral restraints and different web thickness.

Seismic energy dissipation in torsionally responding building systems

  • Correnza, J.C.;Hutchinson, G.L.;Chandler, A.M.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.3
    • /
    • pp.255-272
    • /
    • 1995
  • The paper considers aspects of the energy dissipation response of selected realistic forms of torsionally balanced and torsionally unbalanced building systems, responding to an ensemble of strong-motion earthquake records. Focus is placed on the proportion of the input seismic energy which is dissipated hysteretically, and the distribution of this energy amongst the various lateral load-resisting structural elements. Systems considered comprise those in which torsional effects are discounted in the design, and systems designed for torsion by typical code-defined procedures as incorporated in the New Zealand seismic standard. It is concluded that torsional response has a fundamentally significant influence on the energy dissipation demand of the critical edge elements, and that therefore the allocation of appropriate levels of yielding strength to these elements is a paramount design consideration. Finally, it is suggested that energy-based response parameters be developed in order to assist evaluations of the effectiveness of code torsional provisions in controlling damage to key structural elements in severe earthquakes.

An Analytical Study on Seismic Response Characteristics Considering Soil-Structure-Equipment Interaction (지반-구조물-설비 상호작용을 고려한 지진응답 특성에 관한 해석적 연구)

  • Oh, Hyeon-Jun;Kim, Yousok
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.6
    • /
    • pp.253-263
    • /
    • 2023
  • Non-structural elements, such as equipment, are typically affixed to a building's floor or ceiling and move in tandem with the structure during an earthquake. Seismic forces acting upon non-structural elements traverse the ground and the building's structure. Considering this seismic load transmission mechanism, it becomes imperative to account for the interactions between soil, structure, and equipment, establishing seismic design procedures accordingly. In this study, a Soil-Structure-Equipment Interaction (SSEI) model is developed. Through seismic response analysis using this model, how the presence or absence of SSEI impacts equipment behavior is examined. Neglecting the SSEI aspect when assessing equipment responses results in an overly conservative evaluation of its seismic response. This emphasizes the necessity of proposing an analytical model and design methodology that adequately incorporate the interaction effect. Doing so enables the calculation of rational seismic forces and facilitates the seismic design of non-structural elements.

Interval finite element analysis of masonry-infilled walls

  • Erdolen, Ayse;Doran, Bilge
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.73-84
    • /
    • 2012
  • This paper strongly addresses to the problem of the mechanical systems in which parameters are uncertain and bounded. Interval calculation is used to find sharp bounds of the structural parameters for infilled frame system modeled with finite element method. Infill walls are generally treated as non-structural elements considerably to improve the lateral stiffness, strength and ductility of the structure together with the frame elements. Because of their complex nature, they are often neglected in the analytical model of building structures. However, in seismic design, ignoring the effect of infill wall in a numerical model does not accurately simulate the physical behavior. In this context, there are still some uncertainties in mechanical and also geometrical properties in the analysis and design procedure of infill walls. Structural uncertainties can be studied with a finite element formulation to determine sharp bounds of the structural parameters such as wall thickness and Young's modulus. In order to accomplish this sharp solution as much as possible, interval finite element approach can be considered, too. The structural parameters can be considered as interval variables by using the interval number, thus the structural stiffness matrix may be divided into the product of two parts which correspond to the interval values and the deterministic value.

Dynamically Adaptive Finite Element Mesh Generation Schemes

  • Yoon, Chong-Yul;Park, Joon-Seok
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.23 no.6
    • /
    • pp.659-665
    • /
    • 2010
  • The finite element method(FEM) is proven to be an effective approximate method of structural analysis if proper element types and meshes are chosen, and recently, the method is often applied to solve complex dynamic and nonlinear problems. A properly chosen element type and mesh yields reliable results for dynamic finite element structural analysis. However, dynamic behavior of a structure may include unpredictably large strains in some parts of the structure, and using the initial mesh throughout the duration of a dynamic analysis may include some elements to go through strains beyond the elements' reliable limits. Thus, the finite element mesh for a dynamic analysis must be dynamically adaptive, and considering the rapid process of analysis in real time, the dynamically adaptive finite element mesh generating schemes must be computationally efficient. In this paper, a computationally efficient dynamically adaptive finite element mesh generation scheme for dynamic analyses of structures is described. The concept of representative strain value is used for error estimates and the refinements of meshes use combinations of the h-method(node movement) and the r-method(element division). The shape coefficient for element mesh is used to correct overly distorted elements. The validity of the scheme is shown through a cantilever beam example under a concentrated load with varying values. The example shows reasonable accuracy and efficient computing time. Furthermore, the study shows the potential for the scheme's effective use in complex structural dynamic problems such as those under seismic or erratic wind loads.

Structural Analysis of Plate Structures by Transfer of Stiffness Coefficient (강성계수의 전달에 의한 평판 구조물의 구조해석)

  • Choi, Myung-Soo
    • Journal of Power System Engineering
    • /
    • v.11 no.1
    • /
    • pp.92-97
    • /
    • 2007
  • It is important to compute the structural analysis of plate structures in structural design. In this paper, the author uses the finite element-transfer stiffness coefficient method (FE-TSCM) for the structural analysis of plate structures. The FE-TSCM is based on the concept of the successive transmission of the transfer stiffness coefficient method and the modeling technique of the finite element method (FEM). The algorithm for in-plane structural analysis of a rectangular plate structure is formulated by using the FE-TSCM. In order to confirm the validity of the FE-TSCM for structural analysis of plate structures, two numerical examples for the in-plane structural analysis of a plate with triangular elements and the bending structural analysis of a plate with rectangular elements are computed. The results of the FE-TSCM are compared with those of the FEM on a personal computer.

  • PDF

Linear shell elements for active piezoelectric laminates

  • Rama, Gil;Marinkovic, Dragan Z.;Zehn, Manfred W.
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.729-737
    • /
    • 2017
  • Piezoelectric composite laminates are a powerful material system that offers vast options to improve structural behavior. Successful design of piezoelectric adaptive structures and testing of control laws call for highly accurate, reliable and numerically efficient numerical tools. This paper puts focus onto linear and geometrically nonlinear static and dynamic analysis of smart structures made of such a material system. For this purpose, highly efficient linear 3-node and 4-node finite shell elements are proposed. Both elements employ the Mindlin-Reissner kinematics. The shear locking effect is treated by the discrete shear gap (DSG) technique with the 3-node element and by the assumed natural strain (ANS) approach with the 4-node element. Geometrically nonlinear effects are considered using the co-rotational approach. Static and dynamic examples involving actuator and sensor function of piezoelectric layers are considered.

Performance comparison of shear walls with openings designed using elastic stress and genetic evolutionary structural optimization methods

  • Zhang, Hu Z.;Liu, Xia;Yi, Wei J.;Deng, Yao H.
    • Structural Engineering and Mechanics
    • /
    • v.65 no.3
    • /
    • pp.303-314
    • /
    • 2018
  • Shear walls are a typical member under a complex stress state and have complicated mechanical properties and failure modes. The separated-elements model Genetic Evolutionary Structural Optimization (GESO), which is a combination of an elastic-plastic stress method and an optimization method, has been introduced in the literature for designing such members. Although the separated-elements model GESO method is well recognized due to its stability, feasibility, and economy, its adequacy has not been experimentally verified. This paper seeks to validate the adequacy of the separated-elements model GESO method against experimental data and demonstrate its feasibility and advantages over the traditional elastic stress method. Two types of reinforced concrete shear wall specimens, which had the location of an opening in the middle bottom and the center region, respectively, were utilized for this study. For each type, two specimens were designed using the separated-elements model GESO method and elastic stress method, respectively. All specimens were subjected to a constant vertical load and an incremental lateral load until failure. Test results indicated that the ultimate bearing capacity, failure modes, and main crack types of the shear walls designed using the two methods were similar, but the ductility indexes including the stiffness degradation, deformability, reinforcement yielding, and crack development of the specimens designed using the separated-elements model GESO method were superior to those using the elastic stress method. Additionally, the shear walls designed using the separated-elements model GESO method, had a reinforcement layout which could closely resist the actual critical stress, and thus a reduced amount of steel bars were required for such shear walls.