• Title/Summary/Keyword: Structural elements

Search Result 2,872, Processing Time 0.026 seconds

The Regularization Algorithm of Configuration for Geodesic Borne (지오데식 돔의 형상 균일화 알고리즘)

  • 한상을;이효천;이지연
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.340-347
    • /
    • 2003
  • The aim of regularization of a structural configuration is to obtain a structure that consists of elements with identical or nearly identical length. And it is also possible to modify the configuration in a manner that the size of the elements vary in accordance with a specified pattern. For practical purpose, geodesic dome is cut off at a suitable place in order to make it fit on horizontal. Inevitably this pattern effects a change of element lengths. The purpose of this study is to verify a method for regularization of structural configuration by genetic algorithms and modify the element lengths of the dome. As a result of regularization of domes with various rise-span ratio, modified configurations have more regular element lengths and are more economical than initial configurations.

  • PDF

A Case Study for the Concrete Caisson Crack Failure Using Finite Element Analysis (유한요소 해석을 통한 케이슨 균열발생의 원인규명 사례연구)

  • 박용걸
    • Computational Structural Engineering
    • /
    • v.7 no.4
    • /
    • pp.119-126
    • /
    • 1994
  • One of the most serious promblems in the concrete structures is cracking failure due to the several complicated reasons. These cracks are not only serious structural problems, but also lower the durability and deteriorate the structural shape, which cause the reinforcement rust in the open air and sea water. An analytical study was undertaken to investigate the cracking problems in the one of concrete caissons using Finite Element Method. This caisson is modelled with plate elements and truss elements for the walls and lifting cables respectively and analyzed in the every construction stages, such as lifting, moving, sinking, filling, towing, setting, and proposed reasonable construction methods for the concrete caisson structures.

  • PDF

Inelastic distortional buckling of cantilevers

  • Lee, Dong-Sik;Bradford, Mark Andrew
    • Steel and Composite Structures
    • /
    • v.3 no.1
    • /
    • pp.1-12
    • /
    • 2003
  • Cantilevers are unique statically determinate structural elements with respect to their mode of overall buckling, in that the tension flange is the critical flange under gravity loading, and is the flange that deflects greatest during overall buckling. While this phenomenon does not complicate the calculation of the lateral buckling load, either theoretically or in structural design codes, it has been shown in previous research that the influence of distortion in the elastic buckling of cantilevers is not the same as that experienced in the elastic buckling of simply supported beams. This paper extends the study of the distortional buckling of cantilevers into the hitherto unconsidered inelastic range of structural response. A finite element method for studying the inelastic bifurcative instability of members whose cross-sections may distort during buckling is described, and the efficacy of the method is demonstrated. It is then used to study the inelastic distortional buckling of hot-rolled I-section cantilevers with two common patterns of residual stresses, and which may be restrained elastically from buckling by other structural elements.

Application of Structure Maintenance and Management System Using GIS & GPS

  • Roh, Tae-Ho;Jang, Ho-Sik;Lee, Jong-Chool
    • Korean Journal of Geomatics
    • /
    • v.4 no.1
    • /
    • pp.17-22
    • /
    • 2004
  • It is very important to manage efficient data for safety and maintenance of those constructs. Estimation for structural safety can be evaluated by using data that surveys various structural durability and safety elements. so, it should be based on synthetic and efficient data that includes a variety of related safety elements obtained from a structure. It will subsequently be managed properly and economically. Accordingly, we will approach efficient maintenance management using a Geographic Information System (GIS) with data from structural-safety diagnosis and a Global Positioning System (GPS). In this study, we noted that by using the data that measures the factors (crack, incline, settlement etc.) of various structures as evaluate safety degree. And the horizontal coordinate variation/time of structure was monitored using the GPS easily.

  • PDF

A substructure formulation for the earthquake -induced nonlinear structural pounding problem

  • Shi, Jianye;Bamer, Franz;Markert, Bernd
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.101-113
    • /
    • 2019
  • Earthquake-induced pounding is one of the major reasons for structural failure in earthquake prone cities. An accurate description of the pounding phenomenon of two buildings requires the consideration of systems with a large number of degrees of freedom including adequate contact impact formulations. In this paper, firstly, a node to surface formulation for the realization of state-of-the-art pounding models for structural beam elements is presented. Secondly, a hierarchical substructure technique is introduced, which is adapted to the structural pounding problem. The numerical accuracy and efficiency of the method, especially for the contact forces, are verified on an academic example, applying four different impact elements. Error estimations are carried out and compared with the classical modal truncation method. It is demonstrated that the hierarchical substructure method is indeed able to significantly speed up the numeric integration procedure by preserving a required level of accuracy.

Robust finite element model updating of a large-scale benchmark building structure

  • Matta, E.;De Stefano, A.
    • Structural Engineering and Mechanics
    • /
    • v.43 no.3
    • /
    • pp.371-394
    • /
    • 2012
  • Accurate finite element (FE) models are needed in many applications of Civil Engineering such as health monitoring, damage detection, structural control, structural evaluation and assessment. Model accuracy depends on both the model structure (the form of the equations) and the model parameters (the coefficients of the equations), and can be generally improved through that process of experimental reconciliation known as model updating. However, modelling errors, including (i) errors in the model structure and (ii) errors in parameters excluded from adjustment, may bias the solution, leading to an updated model which replicates measurements but lacks physical meaning. In this paper, an application of ambient-vibration-based model updating to a large-scale benchmark prototype of a building structure is reported in which both types of error are met. The error in the model structure, originating from unmodelled secondary structural elements unexpectedly working as resonant appendages, is faced through a reduction of the experimental modal model. The error in the model parameters, due to the inevitable constraints imposed on parameters to avoid ill-conditioning and under-determinacy, is faced through a multi-model parameterization approach consisting in the generation and solution of a multitude of models, each characterized by a different set of updating parameters. Results show that modelling errors may significantly impair updating even in the case of seemingly simple systems and that multi-model reasoning, supported by physical insight, may effectively improve the accuracy and robustness of calibration.

(4+n)-noded Moving Least Square(MLS)-based finite elements for mesh gradation

  • Lim, Jae Hyuk;Im, Seyoung
    • Structural Engineering and Mechanics
    • /
    • v.25 no.1
    • /
    • pp.91-106
    • /
    • 2007
  • A new class of finite elements is described for dealing with mesh gradation. The approach employs the moving least square (MLS) scheme to devise a class of elements with an arbitrary number of nodal points on the parental domain. This approach generally leads to elements with rational shape functions, which significantly extends the function space of the conventional finite element method. With a special choice of the nodal points and the base functions, the method results in useful elements with polynomial shape functions for which the $C^1$ continuity breaks down across the boundaries between the subdomains comprising one element. Among those, (4 + n)-noded MLS based finite elements possess the generality to be connected with an arbitrary number of linear elements at a side of a given element. It enables us to connect one finite element with a few finite elements without complex remeshing. The effectiveness of the new elements is demonstrated via appropriate numerical examples.

The patch tests and convergence for nonconforming Mindlin plate bending elements

  • Park, Yong-Myung;Choi, Chang-Koon
    • Structural Engineering and Mechanics
    • /
    • v.5 no.4
    • /
    • pp.471-490
    • /
    • 1997
  • In this paper, the classical Irons' patch tests which have been generally accepted for the convergence proof of a finite element are performed for Mindlin plate bending elements with a special emphasis on the nonconforming elements. The elements considered are 4-node and 8-node quadrilateral isoparametric elements which have been dominantly used for the analyses of plate bending problems. It was recognized from the patch tests that some nonconforming Mindlin plate elements pass all the cases of patch tests even though nonconforming elements do not preserve conformity. Then, the clues for the Mindlin plate element to pass the Irons' patch tests are investigated. Also, the convergent characteristics of some nonconforming Mindlin plate elements that do not pass the Irons' patch tests are examined by weak patch tests. The convergence tests are performed on the benchmark numerical problems for both nonconforming elements which pass the patch tests and which do not. Some conclusions on the relationship between the patch test and convergence of nonconforming Mindlin plate elements are drawn.

Formulation and evaluation of incompatible but convergent rational quadrilateral membrane elements

  • Batoz, J.L.;Hammadi, F.;Zheng, C.;Zhong, W.
    • Structural Engineering and Mechanics
    • /
    • v.9 no.2
    • /
    • pp.153-168
    • /
    • 2000
  • This paper presents four incompatible but convergent Rational quadrilateral elements, two four-node elements (RQ4Z and RQ4B) and two five-node elements (RQ5Z and RQ5B). The difference between the so-called Rational Finite Element (Zhong and Zeng 1996) and the Free Formulation (Bergan and Nygard 1984) are discussed and compared. The importance of the mode completeness in these formulations is emphasized. Numerical results for several benchmark problems show the good performance of these elements. The two five-nodes elements RQ5Z and RQ5B, which can be viewed as complete quadratic mode elements (with seven stress modes), always give better results than the four nodes elements RQ4Z and RQ4B.

Advances and Trends in Computational Structural Engineering (전산 구조 공학의 발전과 연구 동향)

  • 최창근
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1988.10a
    • /
    • pp.1-6
    • /
    • 1988
  • In this study, the current progress in computational structural engineering and research trends are discussed. The development of new finite elements, error analysis and adaptive mesh generation, material constitutive model, boundary element methods, structural optimal design, hardware/software, AI application and expert systems are particularly emphasized. The rapid development in computer technologies provides good environment for the technical advancement in computational structural engineering.

  • PDF