• Title/Summary/Keyword: Structural details

Search Result 645, Processing Time 0.029 seconds

Comparison of hot spot stress evaluation methods for welded structures

  • Seo, Jung-Kwan;Kim, Myung-Hyun;Shin, Sang-Beom;Han, Myung-Soo;Park, June-Soo;Mahendr, Mahen;Lee, Jae-Myung
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.2 no.4
    • /
    • pp.200-210
    • /
    • 2010
  • In this paper, different evaluation methods of Hot Spot Stresses (HSS) have been applied to four different welded structure details in order to compare them and to illustrate their differences. The HSSs at failure-critical locations were calculated by means of a series of finite element analyses. There was good overall agreement between calculated and experimentally determined HSS on the critical locations. While different methods and procedures exist for the computation of the structural hot-spot stress at welded joints, the recommendations within the International Institute of Welding (IIW) guideline concerning the 'Hot Spot Stress' approach were found to give good reference stress approximations for fatigue-loaded welded joints. This paper recommends and suggests an appropriate finite element modeling and hot spot stress evaluation technique based on round-robin stress analyses and experimental results of several welded structure details.

A Study on the Improvement of Erection Bar Detailing in Domestic Building Construction (국내 건축물 조립용 철근 배근현황 및 개선방안에 관한 연구)

  • Jung, Hyeon-Ok;Cho, Hun-Hee;Park, U-Yeol
    • Journal of the Korea Institute of Building Construction
    • /
    • v.9 no.2
    • /
    • pp.39-46
    • /
    • 2009
  • The erection bar is defined as the assistant bar used to fix the position of the reinforcing steel as the reinforcing steel is placed on site. As the erection bar do not bear the structural load and is not showed in the structural drawings, it is not managed importantly. But as chair bars in mat footing is used in large quantities to support the upper main bars, the detailing standards need to be suggested. and some erection bar is placed by experience of the fabricator and placer. Therefore, in this study, a survey about the erection bars was conducted to the reinforcement detailer, the fabricator and placer of domestic construction industry. 11 placing drawings is analyzed to find out the problems of detailing and the quantities of the erection bars. According to the analysis of the survey, the erection bar details in placing drawings were not standardized, and some erection bars are omitted in placing drawings. The improvement in the erection bar detailing was sought by analyzing the results of the survey.

Influence of steel fiber and reinforcing details on the ultimate bearing strength of the post-tensioning anchorage zone

  • Kim, Jin-Kook;Yang, Jun-Mo;Kwon, Yangsu
    • Structural Engineering and Mechanics
    • /
    • v.59 no.5
    • /
    • pp.867-883
    • /
    • 2016
  • In this paper, the effects of steel-fiber and rebar reinforcements on the ultimate bearing strength of the local anchorage zone were investigated based on experiments and comparisons between test results and design-equation predictions (AASHTO 2012, NCHRP 1994). Eighteen specimens were fabricated using the same anchorage device, which is one of the conventional anchorage devices, and two transverse ribs were used to secure an additional bearing area for a compact anchorage-zone design. Eight of the specimens were reinforced with only steel fiber and are of two concrete strengths, while six were reinforced with only rebars for two concrete strengths. The other four specimens were reinforced with both rebars and steel fiber for one concrete strength. The test and the comparisons between the design-equation predictions and the test results showed that the ultimate bearing strength and the section efficiency are highly affected by the reinforcement details and the concrete strength; moreover, the NCHRP equation can be conservatively applied to various local anchorage zones for the prediction of the ultimate bearing strength, whereby conditions such as the consideration of the rib area and the calibration factor are changed.

An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns (격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가)

  • Moon, Hong Bi;Ro, Kyong Min;Lee, Young Hak
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.2
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

Seismic Performance of Alternative Steel Structural Systems for an Equipment-Supporting Plant Structure (플랜트 설비 지지용 대안 강구조 시스템의 내진성능)

  • Kwak, Byeong Hun;Ahn, Sook-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.13-24
    • /
    • 2023
  • In this study, alternative seismic force-resisting systems for plant structure supporting equipment were designed, and the seismic performance thereof was compared using nonlinear dynamic analysis. One alternative seismic force-resisting system was designed per the requirement for ordinary moment-resisting and concentrically braced frames but with a reduced base shear. The other seismic force-resisting system was designed by accommodating seismic details of intermediate and unique moment-resisting frames and special concentrically braced frames. Different plastic hinge models were applied to ordinary and ductile systems based on the validation using existing test results. The control model obtained by code-based flexible design and/or reduction of base shear did not satisfy the seismic performance objectives, but the alternative structural system did by strengthened panel zones and a reduced effective buckling length. The seismic force to equipment calculated from the nonlinear dynamic analysis was significantly lower than the equivalent static force of KDS 41 17 00. The comparison of design alternatives showed that the seismic performance required for a plant structure could be secured economically by using performance-based design and alternative seismic-force resisting systems adopting minimally modified seismic details.

Quantitative Damage Index of RC Columns with Non-seismic Details (비내진상세를 가지는 철근콘크리트 기둥의 정량적 손상도 평가 기준)

  • Kim, Kyung-Min;Oh, Sang-Hoon;Choi, Kwang-Yong;Lee, Jung-Han;Park, Byung-Cheol
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.11-20
    • /
    • 2013
  • In this paper, the quantitative damage index for reinforced concrete (RC) columns with non-seismic details were presented. They are necessary to carry out the postearthquake safety evaluation of RC buildings under 5 stories without seismic details. The static cyclic test of the RC frame sub-assemblage that was an one span and actual-sized was first conducted. The specimen collapsed by the shear failure after flexural yielding of a column, lots of cracks on the surfaces of columns and beam-column joints and the cover concrete splitting at the bottom of columns occurred. The damage levels of these kinds of columns with non-seismic details were classified to five based on the load-displacement relationship by the test result. The residual story drift ratios and crack widths were then adapted as the quantitative index to evaluate the damage limit states because those values were comparatively easy to measure right after earthquakes. The highest one among the residual story drift ratios under the similar maximum story drift ratio decided on the residual story drift ratio of each damage limit state. On the other hand, the lowest and average ones among the respective residual shear and flexural widths under the similar maximum story drift ratio decided on the residual shear and flexural widths of each damage limit state, respectively. These values for each damage limit state resulted in being smaller than those by the international damage evaluation guidelines that are for seismically designed members under the same deformations.

An Experimental Study on the Influence of Masonry InFilled Walls on the Seismic Performance of Reinforced Concrete Frames with Non-seismic Details (정적실험을 통한 조적채움벽체가 비내진상세 RC 골조의 내진성능에 미치는 영향 평가)

  • Kim, Kyoung-Min;Choen, Ju-Hyun;Baek, Eun-Rim;Oh, Sang-Hoon;Hwang, Cheol-Seong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.21 no.3
    • /
    • pp.114-120
    • /
    • 2017
  • In this paper, the effect of the masonry infill walls on the seismic performance of the reinforced concrete(RC) frames with non-seismic details was evaluated through the static test of an masonry infilled RC frame sub-assemblage with non-seismic details of real size, and comparison with the test results of the RC frame sub-assemblage with non-seismic details. As the test results, lots of cracks occurred on the surface of the entire frame due to the compression of the masonry infilled wall, and the beam-column joint finally collapsed with the expansion of the shear crack and buckling(exposure) of the reinforcement. On the other hand, the stiffness of the shear force-story drift relationship decreased due to the wall sliding crack and column flexural cracks, and the strength finally decreased by around 60% of the maximum strength. The damage that concentrated on the upper and lower parts of columns was dispersed in the entire frame such as columns, a beam, and beam-column joints due to the wall, and the specimen was finally collapsed by expansion of the shear crack of the joint, not the shear crack of the column. Also, the stiffness of RC frame increased by 12.42 times and the yield strength by 3.63 times, while the story drift at maximum strength decreased by 0.18 times.

Numerical studies on shear connectors in push-out tests under elevated temperatures

  • Wang, Aaron J.
    • Structural Engineering and Mechanics
    • /
    • v.39 no.3
    • /
    • pp.317-338
    • /
    • 2011
  • Three-dimensional thermal and mechanical coupled finite element models are proposed to study the structural behaviours of shear connectors under fire. Concrete slabs, steel beams and shear connectors are modelled with eight-noded solid elements, and profiled steel deckings are modelled with eight-noded shell elements. Thermal, mechanical and geometrical nonlinearities are incorporated into the models. With the proper incorporation of thermal and mechanical contacts among steel beams, shear connectors, steel deckings and concrete slabs, both of the models are verified to be accurate after the validation against a series of push-out tests in the room temperature or under the standard fire. Various thermal and mechanical responses are also extracted and observed in details from the results of the numerical analyses, which gives a better understanding of the structural behavior of shear connectors under elevated temperatures.

Development and Field Application of Pultruded Composite Bridge Deck (인발성형 복합소재 교량 바닥판의 개발 및 현장적응)

  • 이성우;김병석;박신전;박성용;김성태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.119-126
    • /
    • 2003
  • In the conventional reinforced-concrete bridge deck, concrete and steels are likely to be deteriorated and corroded under the influence of noxious environment. To cope with these problems caused in the conventional reinforced-concrete bridge deck, pultruded composite bridge deck having light weight, high strength, corrosion resistence and durability is developed. Based on the previous study, Pultruded composite bridge deck is designed. For the DB24 truck load finite element analysis is performed to verify whether it meets both strength and serviceability design criteria. For the fabricated and assembled deck panel, structural testings are conducted. This paper present structural details and field application and testing results of composite bridge deck are presented. of composite bridge deck.

  • PDF

Reviews on innovations and applications in structural health monitoring for infrastructures

  • Li, Hong-Nan;Yi, Ting-Hua;Ren, Liang;Li, Dong-Sheng;Huo, Lin-Sheng
    • Structural Monitoring and Maintenance
    • /
    • v.1 no.1
    • /
    • pp.1-45
    • /
    • 2014
  • The developments and implementations of the structural health monitoring (SHM) system for large infrastructures have been gradually recognized by researchers, engineers and administrative authorities in the last decades. This paper summarizes an updated review on innovations and applications in SHM for infrastructures carried out by researchers at Dalian University of Technology. Invented sensors and data acquisition system are firstly briefly described. And then, some proposed theories and methods including the sensing technology, sensor placement method, signal processing and data fusion, system identification and damage detection are discussed in details. Following those, the activities on the standardization of SHM and several case applications on specific types of structure are reviewed. Finally, existing problems and promising research efforts in the field of SHM are given.