• Title/Summary/Keyword: Structural details

Search Result 645, Processing Time 0.025 seconds

Effective Punching Shear and Moment Capacity of Flat Plate-Column Connection with Shear Reinforcements for Lateral Loading

  • Song, Jin-Kyu;Kim, Ju-Bum;Song, Ho-Bum;Song, Jeong-Won
    • International Journal of Concrete Structures and Materials
    • /
    • v.6 no.1
    • /
    • pp.19-29
    • /
    • 2012
  • In this study, three isolated interior flat slab-column connections that include three types of shear reinforcement details; stirrup, shear stud and shear band were tested under reversed cyclic lateral loading to observe the capacity of slab-column connections. These reinforced joints are 2/3 scale miniatures designed to have identical punching capacities. These experiments showed that the flexural failure mode appears in most specimens while the maximum unbalanced moment and energy absorbing capacity increases effectively, with the exception of an unreinforced standard specimen. Finally, the results of the experiments, as wel l as those of experiments previously carried out by researchers, are applied to the eccentricity shear stress model presented in ACI 318-08. The failure mode is therefore defined in this study by considering the upper limits for punching shear and unbalanced moment. In addition, an intensity factor is proposed for effective widths of slabs that carry an unbalanced moment delivered by bending.

On the fatigue performance of Aluminum alloy 2024 scarfed lap joints

  • Yan, W.Z.;Gao, H.S.;Yuan, X.;Wang, F.S.;Yue, Z.F.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.1
    • /
    • pp.35-49
    • /
    • 2012
  • A series of fatigue test were carried out on scarfed lap joints (SLJ) using in airfoil siding to explore the effect of structural details, such as rows of rivets, lap angles, on its fatigue performance. Finite element (FE) analysis was employed to explore the effect of lap angle on load transfer and the stress evolution around the rivet hole. At last, the fatigue lives were predicted by nominal stress approach and critical plane approach. Both of the test results and predicted results showed that fatigue life of SLJ was remarkably increased after introducing lap angle into the faying surface. Specimen with the lap angle of $1.68^{\circ}$ exhibits the best fatigue performance in the present study.

Evaluation of mechanical properties for high strength and ultrahigh strength concretes

  • Murthy, A. Ramachandra;Iyer, Nagesh R.;Prasad, B.K. Raghu
    • Advances in concrete construction
    • /
    • v.1 no.4
    • /
    • pp.341-358
    • /
    • 2013
  • Due to fast growth in urbanisation, a highly developed infrastructure is essential for economic growth and prosperity. One of the major problems is to preserve, maintain, and retrofit these structures. To meet the requirements of construction industry, the basic information on all the mechanical properties of various concretes is essential. This paper presents the details of development of various concretes, namely, normal strength concrete (around 50 MPa), high strength concrete (around 85 MPa) and ultra high strength concrete (UHSC) (around 120 MPa) including their mechanical properties. The various mechanical properties such as compressive strength, split tensile strength, modulus of elasticity, fracture energy and tensile stress vs crack width have been obtained from the respective test results. It is observed from the studies that a higher value of compressive strength, split tensile strength and fracture energy is achieved in the case of UHSC, which can be attributed to the contribution at different scales viz., at the meso scale due to the fibers and at the micro scale due to the close packing of grains which is on account of good grading of the particles. Micro structure of UHSC mix has been examined for various magnifications to identify the pores if any present in the mix. Brief note on characteristic length and brittleness number has been given.

Modified cyclic steel law including bond-slip for analysis of RC structures with plain bars

  • Caprili, Silvia;Mattei, Francesca;Gigliotti, Rosario;Salvatore, Walter
    • Earthquakes and Structures
    • /
    • v.14 no.3
    • /
    • pp.187-201
    • /
    • 2018
  • The paper describes a modified cyclic bar model including bond-slip phenomena between steel reinforcing bars and surrounding concrete. The model is focused on plain bar and is useful, for its simplicity, for the seismic analyses of RC structures with plain bars and insufficient constructive details, such as in the case of '60s -'70s Mediterranean buildings. The model is based on an imposed exponential displacements field along the bar including both steel deformation and slip; through the adoption of equilibrium and compatibility equations a stress-slip law can be deducted and simply applied, with opportune operations, to RC numerical models. This study aims to update and complete the original monotonic model published by the authors, solving some numerical inconsistencies and, mostly, introducing the cyclic formulation. The first aim is achieved replacing the imposed linear displacement field along the bar with an exponential too, while the cyclic behaviour is described through a formulation based on the results of parametric analyses concerning a large range of steel and concrete properties and geometric configurations. Validations of the proposed model with experimental results available in the current literature confirm its accuracy and the reduced computational burden, highlighting its suitability in performing nonlinear analyses of RC structures.

Experimental Study on the Tensile Behaviors of Stud Connection with Hanger (행거로 보강된 스터드 접합부의 인장거동에 관한 실험적 연구)

  • Kim, Seung-Hun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.8 no.4
    • /
    • pp.231-238
    • /
    • 2004
  • This paper presents the tensile behavior of the stud connection between reinforced concrete(RC) and steel members. Hanger reinforcements are placed around the studs to transfer the tensile and flexural loads to the opposite side of the concrete member. Eight specimens for the tensile tests are tested with variables, which are the arrangement details of hanger reinforcements, the reinforcing bars, and the embedment length of stud. The results of the tensile tests show that hanger reinforcements are effective to increase tensile strength for stud connections. Hangers and reinforcing bars near stud bolts contributed to the reduction of brittle failure. From the evaluation on the tensile strength by previous design guidelines, it was shown that CCD (Concrete Capacity Design) method was more suitable for estimation of test strength.

Hysteretic Behavior of Steel Damper for the Lateral Displacement Control (횡 변위 조절을 위한 강재 댐퍼의 이력 거동)

  • Lee, Hyun-Ho
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.22 no.3
    • /
    • pp.46-52
    • /
    • 2018
  • Detail development and performance tests were conducted for the purpose of developing a damper system capable of lateral displacement control of existing frame structures. The development details are 1) ALD designed to prevent deformation of beams between columns and 2) AWD designed to control inter-story displacement. The non-reinforced BF specimen was used as a comparative study. The evaluation variables are failure mode, load-displacement curve, envelope curve, maximum strength, stiffness degradation and energy dissipation capacity. As a result, the seismic strengthening effect of ALD and AWD was confirmed. Also, it was confirmed that the method of restraining the column with the aramid sheet is superior to the improvement of the seismic performance.

AEM on Growth Mechanism of Synthesized Graphene on Ni Catalyst

  • Park, Min-Ho;Lee, Jae-Uk;Bae, Ji-Hwan;Song, Gwan-U;Kim, Tae-Hun;Yang, Cheol-Ung
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2012.02a
    • /
    • pp.579-579
    • /
    • 2012
  • Graphene has recently been a subject of much interest as a potential platform for future nanodevices such as flexible thin-film transistors, touch panels, and solar cells. And chemical vapor deposition (CVD) and related surface segregation techniques are a potentially scalable approach to synthesizing graphite films on a variety of metal substrates. The structural properties of such films have been studied by a number of methods, including Raman scattering, x-ray photoelectron spectroscopy (XPS), atomic force microscopy (AFM), and transmission electron microscopy (TEM). An understanding of the structural quality and thickness of the graphite films is of paramount importance both in improving growth procedures and understanding the resulting films' electronic properties. In this study, we synthesized the few-layered grapheneunder optimized condition to figure out the growth mechanism seen in CVD-grown graphenee by using various electron microscope. Especially, we observed directly film thickness, quality, nucleation site, and uniformity of grpahene by using AEM. The details will be discussed in my presentation.

  • PDF

A Parametric Study on Bulkhead Plate of Orthotropic Steel Deck Bridge (강바닥판교의 벌크헤드 플레이트에 관한 매개변수 연구)

  • 공병승;김진만
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.333-339
    • /
    • 2003
  • Recently, the bridges become greater according to development of a construction technology. This phenomenon requires long span bridge, so that increases the dead weight. The orthotropic steel deck bridges have much advantages such as the light dead weight and the reduction of construction period. And almost whole process of carried out is manufactured at factory, so it can cause the increase of quality authoritativeness. But orthotropic steel deck bridge is consist of structure by welding, it can not avoid a lot of welding jobs, defects and transformation by welding are becoming problem accordingly. Specially, topical stress concentration phenomenon in cross connection area of longitudinal and transverse rib causes fatigue failure. The Bulkhead Plate for prevention of this stress concentration phenomenon was applied by changing the orthotropic steel deck of Williamsburg bridge in USA. But, it is principle that a Bulkhead Plate is not established in the domestic design standard. Therefore, it is estimated that the study for installation of Bulkhead Plate is needed. This treatise with considering these circumstances proves efficiency of Bulkhead Plate and will be presented optimal design details through finite element analysis according to change the geometrical of Bulkhead Plate and tile cross-connection area of longitudinal and transverse rib.

  • PDF

Shake table tests on a non-seismically detailed RC frame structure

  • Sharma, Akanshu;Reddy, G.R.;Vaze, K.K.
    • Structural Engineering and Mechanics
    • /
    • v.41 no.1
    • /
    • pp.1-24
    • /
    • 2012
  • A reinforced concrete (RC) framed structure detailed according to non-seismic detailing provisions as per Indian Standard was tested on shake table under dynamic loads. The structure had 3 main storeys and an additional storey to simulate the footing to plinth level. In plan the structure was symmetric with 2 bays in each direction. In order to optimize the information obtained from the tests, tests were planned in three different stages. In the first stage, tests were done with masonry infill panels in one direction to obtain information on the stiffness increase due to addition of infill panels. In second stage, the infills were removed and tests were conducted on the structure without and with tuned liquid dampers (TLD) on the roof of the structure to investigate the effect of TLD on seismic response of the structure. In the third stage, tests were conducted on bare frame structure under biaxial time histories with gradually increasing peak ground acceleration (PGA) till failure. The simulated earthquakes represented low, moderate and severe seismic ground motions. The effects of masonry infill panels on dynamic characteristics of the structure, effectiveness of TLD in reducing the seismic response of structure and the failure patterns of non-seismically detailed structures, are clearly brought out. Details of design and similitude are also discussed.

Experimental study of cyclic behavior of composite vertical shear link in eccentrically braced frames

  • Shayanfar, M.A.;Barkhordari, M.A.;Rezaeian, A.R.
    • Steel and Composite Structures
    • /
    • v.12 no.1
    • /
    • pp.13-29
    • /
    • 2012
  • This paper is an experimental study on the behavior of vertical shear link in normal (steel section with and without stiffener) and composite (steel section with concrete located at the area limited to web and flanges of the section) configurations. This study is mainly aimed to perceive failure mechanism, collect laboratory data, and consider the effect of number of transverse reinforcements on strength and ductility of composite vertical links. There have been four specimens selected for examining the effects of different details. The first specimen was an I section with no stiffener, the second composed of I section with stiffeners provided according to AISC 2005. The third and fourth specimens were composed of I sections with reinforced concrete located at the area between its flanges and web. The tests carried out were of quasi-static type and conducted on full scale specimens. Experimental findings show remarkable increase in shear capacity and ductility of the composite links as compared to the normal specimens.