• 제목/요약/키워드: Structural design system

검색결과 3,640건 처리시간 0.03초

A Study on Conceptual Structural Design of Wing for a Small Scale WIG Craft Using Carbon/Epoxy and Foam Sandwich Composite Structure

  • Kong, Chang-Duk;Park, Hyun-Bum;Kang, Kuk-Gin
    • Advanced Composite Materials
    • /
    • 제17권4호
    • /
    • pp.343-358
    • /
    • 2008
  • This present study provides the structural design and analysis of main wing, horizontal tail and control surface of a small scale WIG (Wing-in-Ground Effect) craft which has been developed as a future high speed maritime transportation system of Korea. Weight saving as well as structural stability could be achieved by using the skin.spar.foam sandwich and carbon/epoxy composite material. Through sequential design modifications and numerical structural analysis using commercial FEM code PATRAN/NASTRAN, the final design structural features to meet the final design goal such as the system target weight, structural safety and stability were obtained. In addition, joint structures such as insert bolts for joining the wing with the fuselage and lugs for joining the control surface to the wing were designed by considering easy assembling as well as more than 20 years service life.

폰툰식 VLFS의 초기구조설계에 관한 연구 (A Study on Preliminary Structural Design of Pontoon Type VLFS)

  • 박성환;이탁기;홍사영
    • 대한조선학회논문집
    • /
    • 제42권6호
    • /
    • pp.644-653
    • /
    • 2005
  • In general the loads due to ocean wave are considered as main design parameters governing the global structural safety of VLFS (Very Large Floating Structure). In order to predict design wave loads accurately, hydro-elastic analysis must be conducted considering the initial global flexural rigidity of VLFS. However, in order to determine the structural scantling of major members (deck, bottom, side panels and longitudinal / transverse BHD etc.), static load and design wave loads must be given as explicit form generally. Therefore in order to determine a proper structural arrangement and scantlings of VLFS at initial design stage, both calculations of structural scantling and hydro-elastic analysis for wave conditions must be conducted iteratively and the convergence of their results must be checked. On this paper, based on the case design of a 500×300 m size's floating marina resort, the details of structural design technique using hydro-elastic analysis are explained and discussed. At first, the environmental conditions and the system requirements of the design of marina resort are described. The scantling formulas for the major members of pontoon type VLFS are proposed from the local and global design points of view. Considering the design wave loads as well as static design loads, the structural safety is checked iteratively.

캐드시스템을 이용한 철골구조물의 설계에 관한 연구 (A Study on the Steel Frame Design using Computer Aided Design System)

  • 조병철;이수곤
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1992년도 가을 학술발표회 논문집
    • /
    • pp.121-126
    • /
    • 1992
  • This Paper presents a development of a CAD system for interactive design of steel frames. The adopted building code for structural design is "Steel Building Codes" enacted by the Architectural Institute of Korea in 1973. The selected member sections, therefore, are domestic rolled sections - especially, H shapes. The authors aim at a development of an integrated computer programs repeating plane frame analysis and design of members until minimum weight design condition is satisfied. This program also provides various section change functions to improve the shortcomings of automatic design.ic design.

  • PDF

자연섬유 복합재료 풍력 발전 시스템 블레이드 제작 및 구조 시험 연구 (A Study on Manufacturing and Structural Test of Wind Turbine System Blade using Natural Composite)

  • 박현범
    • 항공우주시스템공학회지
    • /
    • 제11권4호
    • /
    • pp.30-35
    • /
    • 2017
  • 본 연구에서는 자연섬유 복합재료를 적용하여 1kW급 수평축 소형 풍력 발전 시스템 블레이드의 제작과 구조 시험 연구를 수행하였다. 블레이드의 설계 요구 조건을 분석하여 공력 설계를 수행하였다. 공력 설계 이후 구조 설계 하중을 도출하고 블레이드의 구조 설계를 수행하였다. 블레이드의 구조 설계기법은 복합재료를 적용한 단순 설계 기법과 혼합 설계 기법을 적용하였다. 설계된 블레이드의 구조 안전성은 다양한 하중조건, 변위, 좌굴 등의 해석을 위해 유한요소기법으로 분석하였다. 최종 자연 섬유를 적용한 블레이들 제작하였으며, 구조 시험을 수행하였다.

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • 제10권2호
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

설계 전문가시스템 : 법용 셸을 이용한 선박구조설계의 지원 (A Disign Expert System : Support of the Ship Structural Design by a General-Purpose Shell)

  • 한순흥;이효섭;이동곤
    • 대한기계학회논문집
    • /
    • 제18권3호
    • /
    • pp.777-784
    • /
    • 1994
  • A design expert system for the ship structural design is developed to support inexperienced designers. To establish the knowledge-base, an expert system development shell, Nexpert, is used. Knowledge is extracted from the rules of a classification society of ships, and also from an existing ship structural program that is being used by ship designers. This knowledge is systematized using the objectoriented concept. The design support system is constructed by adding additional functions which are required for the conventional engineering design work. Added functions are; calculation of longitudinal strength, database of existing ship designs, graphical user interface, and visualization of design results. It is observed that visualizing the relationships among the rules, which are activated to draw a certain design decision, is helpful. The system can easily be updated according to changes of the rule books of ship classification societies.

설계민감도 해석을 이용한 승용차의 스티어링 휠 아이들 진동 개선 (Improvement of Steering-Wheel Idle Vibration in a Passenger Car using Design Sensitivity Analysis)

  • 이두호;김명업
    • 한국자동차공학회논문집
    • /
    • 제8권2호
    • /
    • pp.129-137
    • /
    • 2000
  • In the prototype stage of a car developing program, the efficiency of trouble shooting is an important factor to be considered. Structural modifications by the design sensitivity analysis are applied to a steering wheel system for improving the idle vibration of the prototype passenger car. For the design sensitivity analysis, the experimental modal analysis for the steering system attached to a body-in-white is fulfilled and the modal parameters extracted from the experimental data are used to predict the effect of structural modification, The design sensitivity results rank the locations to be reinforced in terms of frequency variation. The modification of steering system according to the sensitivity analysis results shifted the resonant frequency of the system effectively. In addition, the idle test of the car after the structural modifications f steering system shows that the proposed method can reduce vibration of the steering wheel efficiently.

  • PDF

선박블록 탑재용 러그구조의 파라메트릭 설계 고찰 (Parametric Design Considerations for Lifting Lug Structure on Ship Block)

  • 함주혁
    • 한국해양공학회지
    • /
    • 제25권2호
    • /
    • pp.101-107
    • /
    • 2011
  • In view of the importance of material reduction because of the jump in oil and steel prices, structural design studies for lifting lugs were performed. Hundreds of thousands of such lifting lug structures are needed every year for ship construction. A direct design study was reviewed using the developed design system to increase the design efficiency and provide a way of directly inserting a designer's decisions into the design system process. In order to understand the design efficiency and convenience of a lug structure, parametric studies for prototype lug shapes were performed using the developed design system. From these design studies, various patterns of design parameters for the lug structure according to changes in the main plate length were examined. Based on these parametric study results, design guides were developed for more efficiently suggesting structural data for enormous lug structures. Additionally, a more detailed structural analysis through local strength evaluations will be performed to verify the efficiency of the optimum structural design for a lug structure.

Lagrange Multipliers에 의한 슬래브시스템의 신뢰성 최적설계 (Reliability Optimum Design of Slab System based on Lagrange Multipliers)

  • 김현석;이증빈;정철원
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제1권1호
    • /
    • pp.113-124
    • /
    • 1997
  • Based on the recent developments of the reliability-based structural analysis and design as well as the extending knowledge on the probabilistic characteristics of load and resistances, the probability based design criteria have been successfully developed for many standards. Since the probabilistic characteristics depend highly on the local load and resistances, it is recognized to develop the design criterion compatible with domestic requirements. The existing optimum design methods, which are generally based on the structural theory and certain engineering exprience, do not realistically consider the uncertainties of load and resistances and the basic reliability concepts. This study is directed to propose a optimum design based Expected Total Cost Minimization on two-way slab system which could possibly replace optimum design based traditional provisions of the current code, based on the AFOSM reliablity theory.

  • PDF

2연 전력구의 자동화 설계 (Development of CAD System for 2Cell Box Culvert)

  • 송영철;최홍식;노병철;우상균
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 1996년도 가을 학술발표회 논문집
    • /
    • pp.322-329
    • /
    • 1996
  • The objective of this study is to develop the CAD system for 2 cell box culvert by ultimate strength design method. C-language & AutoCAD Rl2 were used to create user-friendly computing environment. Consequently, users can easily design 2 cell box culvert under the various conditions, such as design load, total fill depth, underground water level, strength of concrete, and so forth. This system is believed to improve the efficiency and economy by the batch processing of structural analysis, quick drafting and computation of material quantity in the 2 cell box culvert design.

  • PDF