• Title/Summary/Keyword: Structural design optimization

Search Result 1,621, Processing Time 0.028 seconds

Structural design using topology and shape optimization

  • Lee, Eun-Hyung;Park, Jaegyun
    • Structural Engineering and Mechanics
    • /
    • v.38 no.4
    • /
    • pp.517-527
    • /
    • 2011
  • A topology optimization and shape optimization method are widely used in the design area of engineering field. In this paper, a unified procedure to combine both topology and shape optimization method is used. A material distribution method is used first to extract necessary design parameters of the structure and a shape optimization scheme using genetic algorithm and satisfying all the condition follows. As an example, a GFRP bridge deck is designed and compared with other commercial products. The performance of the designed deck shows that the used design procedure is very efficient and safe. This procedure can be generalized for using in other areas of engineering.

Design Sensitivity Analysis and Topology Optimization of Geometrically Nonlinear Structures (기하학적 비선헝 구조물의 설계 민감도해석 및 위상최적설계)

  • Cho, Seonho;Jung, Hyunseung;Yang, Youngsoon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.335-342
    • /
    • 2002
  • A continuum-based design sensitivity analysis (DSA) method fur non-shape problems is developed for geometrically nonlinear elastic structures. The non-shape problem is characterized by the design variables that are not associated with the domain of system like sizing, material property, loading, and so on. Total Lagrangian formulation with the Green-Lagrange strain and the second Piola-Kirchhoff stress is employed to describe the geometrically nonlinear structures. The spatial domain is discretized using the 4-node isoparametric plane stress/strain elements. The resulting nonlinear system is solved using the Newton-Raphson iterative method. To take advantage of the derived analytical sensitivity In topology optimization, a fast and efficient design sensitivity analysis method, adjoint variable method, is employed and the material property of each element is selected as non-shape design variable. Combining the design sensitivity analysis method and a gradient-based design optimization algorithm, an automated design optimization method is developed. The comparison of the analytical sensitivity with the finite difference results shows excellent agreement. Also application to the topology design optimization problem suggests a very good insight for the layout design.

  • PDF

Reliability-Based Design Optimization using Semi-Numerical Strategies for Structural Engineering Applications

  • Kharmanda, G.;Sharabatey, S.;Ibrahim, H.;Makhloufi, A.;Elhami, A.
    • International Journal of CAD/CAM
    • /
    • v.9 no.1
    • /
    • pp.1-16
    • /
    • 2010
  • When Deterministic Design Optimization (DDO) methods are used, deterministic optimum designs are frequently pushed to the design constraint boundary, leaving little or no room for tolerances (or uncertainties) in design, manufacture, and operating processes. In the Reliability-Based Design Optimization (RBDO) model for robust system design, the mean values of uncertain system variables are usually used as design variables, and the cost is optimized subject to prescribed probabilistic constraints as defined by a nonlinear mathematical programming problem. Therefore, a RBDO solution that reduces the structural weight in uncritical regions does not only provide an improved design but also a higher level of confidence in the design. In this work, we seek to improve the quality of RBDO processes using efficient optimization techniques with object of improving the resulting objective function and satisfying the required constraints. Our recent RBDO developments show its efficiency and applicability in this context. So we present some recent structural engineering applications demonstrate the efficiency of these developed RBDO methods.

Robust concurrent topology optimization of multiscale structure under load position uncertainty

  • Cai, Jinhu;Wang, Chunjie
    • Structural Engineering and Mechanics
    • /
    • v.76 no.4
    • /
    • pp.529-540
    • /
    • 2020
  • Concurrent topology optimization of macrostructure and microstructure has attracted significant interest due to its high structural performance. However, most of the existing works are carried out under deterministic conditions, the obtained design may be vulnerable or even cause catastrophic failure when the load position exists uncertainty. Therefore, it is necessary to take load position uncertainty into consideration in structural design. This paper presents a computational method for robust concurrent topology optimization with consideration of load position uncertainty. The weighted sum of the mean and standard deviation of the structural compliance is defined as the objective function with constraints are imposed to both macro- and micro-scale structure volume fractions. The Bivariate Dimension Reduction method and Gauss-type quadrature (BDRGQ) are used to quantify and propagate load uncertainty to calculate the objective function. The effective properties of microstructure are evaluated by the numerical homogenization method. To release the computation burden, the decoupled sensitivity analysis method is proposed for microscale design variables. The bi-directional evolutionary structural optimization (BESO) method is used to obtain the black-and-white designs. Several 2D and 3D examples are presented to validate the effectiveness of the proposed robust concurrent topology optimization method.

Discrete sizing and layout optimization of steel truss-framed structures with Simulated Annealing Algorithm

  • Bresolin, Jessica M.;Pravia, Zacarias M.C.;Kripka, Moacir
    • Steel and Composite Structures
    • /
    • v.44 no.5
    • /
    • pp.603-617
    • /
    • 2022
  • Structural design, in general, is developed through trial and error technique which is guided by standards criteria and based on the intuition and experience of the engineer, a context that leads to structural over-dimensioning, with uneconomic solutions. Aiming to find the optimal design, structural optimization methods have been developed to find a balance between cost, structural safety, and material performance. These methods have become a great opportunity in the steel structural engineering domain since they have as their main purpose is weight minimization, a factor directly correlated to the real cost of the structure. Assuming an objective function of minimum weight with stress and displacement constraints provided by Brazilian standards, the present research proposes the sizing optimization and combined approach of sizing and shape optimization, through a software developed to implement the Simulated Annealing metaheuristic algorithm. Therefore, two steel plane frame layouts, each admitting four typical truss geometries, were proposed in order to expose the difference between the optimal solutions. The assessment of the optimal solutions indicates a notable weight reduction, especially in sizing and shape optimization combination, in which the quantity of design variables is increased along with the search space, improving the efficiency of the optimal solutions achieved.

3D Topology Optimization of Fixed Offshore Structure and Experimental Validation

  • Kim, Hyun-Seok;Kim, Hyun-Sung;Park, Byoungjae;Lee, Kangsu
    • Journal of Ocean Engineering and Technology
    • /
    • v.34 no.4
    • /
    • pp.263-271
    • /
    • 2020
  • In this study, we performed a three-dimensional (3D) topology optimization of a fixed offshore structure to enhance its structural stiffness. The proposed topology optimization is based on the solid isotropic material with penalization (SIMP) method, where a volume constraint is applied to utilize an equivalent amount of material as that used for the rule-based scantling design. To investigate the effects of the main legs of the fixed offshore structure on its structural stiffness, the leg region is selectively considered in the design domain of the topology optimization problem. The obtained optimal designs and the rule-based scantling design of the structure are manufactured by 3D metal printing technology to experimentally validate the topology optimization. The behaviors under compressive loading of the obtained optimal designs are compared with those of the rule-based scantling design using a universal testing machine (UTM). Based on the structural experiments, we concluded that by employing the topology optimization method, the structural stiffness of the structure was enhanced compared to that of the rule-based scantling design for an equal amount of the fabrication material. Furthermore, by effectively combining the topology optimization and rule-based scantling methods, we succeeded in enhancing the structural stiffness and improving the breaking load of the fixed offshore structure.

A multi-parameter optimization technique for prestressed concrete cable-stayed bridges considering prestress in girder

  • Gao, Qiong;Yang, Meng-Gang;Qiao, Jian-Dong
    • Structural Engineering and Mechanics
    • /
    • v.64 no.5
    • /
    • pp.567-577
    • /
    • 2017
  • The traditional design procedure of a prestressed concrete (PC) cable-stayed bridge is complex and time-consuming. The designers have to repeatedly modify the configuration of the large number of design parameters to obtain a feasible design scheme which maybe not an economical design. In order to efficiently achieve an optimum design for PC cable-stayed bridges, a multi-parameter optimization technique is proposed. In this optimization technique, the number of prestressing tendons in girder is firstly set as one of design variables, as well as cable forces, cable areas and cross-section sizes of the girders and the towers. The stress and displacement constraints are simultaneously utilized to ensure the safety and serviceability of the structure. The target is to obtain the minimum cost design for a PC cable-stayed bridge. Finally, this optimization technique is carried out by a developed PC cable-stayed bridge optimization program involving the interaction of the parameterized automatically modeling program, the finite element structural analysis program and the optimization algorithm. A low-pylon PC cable-stayed bridge is selected as the example to test the proposed optimization technique. The optimum result verifies the capability and efficiency of the optimization technique, and the significance to optimize the number of prestressing tendons in the girder. The optimum design scheme obtained by the application can achieve a 24.03% reduction in cost, compared with the initial design.

Optimum Life-Cycle Cost Design of Steel Box Girder Bridges Using Collaborative Optimization (협동 최적화 방법을 이용한 강상자형교의 생애주기비용 최적설계)

  • 조효남;민대홍;권우성
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2001.10a
    • /
    • pp.201-210
    • /
    • 2001
  • In this study, large-scale distributed design approach for a life cycle cost (LCC) optimization of steel box girder bridges was implemented. A collaborative optimization approach is one of the multidisciplinary design optimization approaches and it has been proven to be best suited for distributed design environment. The problem of optimum LCC design of steel box girder bridges is formulated as that of minimization of the expected total LCC that consists of initial cost maintenance cost expected retrofit costs for strength, deflection and crack. To discuss the possibility of the application for the collaborative optimization of steel box girder bridges, the results of this algorithm are compared with those of single level algorithm. From the numerical investigations, the collaborative optimization approach proposed in this study may be expected to be new concepts and design methodologies associated with the LCC approach.

  • PDF

Improved Concurrent Subspace Optimization Using Automatic Differentiation (자동미분을 이용한 분리시스템동시최적화기법의 개선)

  • 이종수;박창규
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.359-369
    • /
    • 1999
  • The paper describes the study of concurrent subspace optimization(CSSO) for coupled multidisciplinary design optimization (MDO) techniques in mechanical systems. This method is a solution to large scale coupled multidisciplinary system, wherein the original problem is decomposed into a set of smaller, more tractable subproblems. Key elements in CSSO are consisted of global sensitivity equation(GSE), subspace optimization (SSO), optimum sensitivity analysis(OSA), and coordination optimization problem(COP) so as to inquiry valanced design solutions finally, Automatic differentiation has an ability to provide a robust sensitivity solution, and have shown the numerical numerical effectiveness over finite difference schemes wherein the perturbed step size in design variable is required. The present paper will develop the automatic differentiation based concurrent subspace optimization(AD-CSSO) in MDO. An automatic differentiation tool in FORTRAN(ADIFOR) will be employed to evaluate sensitivities. The use of exact function derivatives in GSE, OSA and COP makes Possible to enhance the numerical accuracy during the iterative design process. The paper discusses how much influence on final optimal design compared with traditional all-in-one approach, finite difference based CSSO and AD-CSSO applying coupled design variables.

  • PDF

Structural Analysis of RIROB(Reactor Inspection Robot) (원자로용 수중탐상기의 구조해석)

  • 최석호;권영주;김재희
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.613-616
    • /
    • 1997
  • MDO(Multidisciplinary Design Optimization) methodology is an emerging new technology to solve a complicate structural analysis and design problem with a number of design variables and constraints. In this paper MDO methodology is adopted through the use of computer aided engineering(CAE) system. And this paper treats the structural design problem of RIROB(Reactor Inspection Robot) through the application of MDO methodology. In a MDO methodology application to the structural design of RIBOS, kinetodynamic analysis is done using a simple fluiddynamic analysis model for the warter flow over the sensor support surface instead of difficult fluid dynamic analysis. Simultaneously the structural static analysis is done to obtain the optimum structural condition. The minimum thickness (0.8cm) of the RIROB housing is obtained for the safe design of RIROB. The kinetodynamic analysis of RIROB. The kinetodynamic analysis of RIROB is done using ADAMS and the static structural analysis of RIROB is done using NISA.

  • PDF