• Title/Summary/Keyword: Structural deformation

Search Result 2,831, Processing Time 0.028 seconds

Study on the Tightening Force and the Friction Coefficient in a Bolt tightened upto the Plastic Range (소성역체결 볼트의 체결력과 마찰계수에 관한 연구)

  • 손승요;신근하
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1994.04a
    • /
    • pp.33-37
    • /
    • 1994
  • When a bolt is tightened up to the range of plastic deformation, yielding is governed by the combined stresses due to the axial force developed in the bolt and the frictional torque developed on the thread in contact with the nut. Consideration is taken account of the fact that the unused portion of the thread has least sectional area being subject to initial yielding. Once yielding has taken place some strain hardening effect will result, Incremental stress-strain relations are used to treat the continued yielding, which is equivalent to treat continued yielding as if summing up the effects of thin walled cylinders subject to plastic deformation. M10 bolts of common and fine series thread are used for computational purposes. Variation of axial forces and frictional torques vs. the frictional coefficients tare presented together with other plots showing some characteristics of bolt under plastic deformation.

  • PDF

An Analytical Study of the Flexural Deformation for High Strength Concrete Structures using Reliability Theory (신뢰성 이론을 이용한 500kgf/$\textrm{cm}^2$의 고강도콘크리트 구조물에 대한 휨변형의 해석적 연구)

  • 송재호;최광진;김민웅;홍원기
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.231-236
    • /
    • 1995
  • The object of this thesis is an analytical study on flexural deformation of high strength concrete structures using reliability theory. Using the established experimental data that have been presented in various documents the stress-strain relationship curves of high strength(500kgf/$\textrm{cm}^2$)models are proposed. Based on both methods of logarithm regression analysis and multiple regression analysis adopted in order to establish the relationships between design parameters, response random variables and flexural deformation analyzed using Monte Carlo simulation and Simpson composite formula. Additional random variables are introduced to incorporate both the confidence in the analytical accuracy of engineering mechanics associated with structural response quantities and the uncertainty in the construction quality control. The result is expected to accomodate other important design parameter of high strength concrete design in treating reliability theory that practicing engineers, structural engineering often face.

  • PDF

Simple geometrical model to analyze the motion detection of bridges based-GPS technique: case study Yonghe Bridge

  • Kaloop, Mosbeh R.;Li, Hui
    • Structural Engineering and Mechanics
    • /
    • v.36 no.2
    • /
    • pp.129-147
    • /
    • 2010
  • This study deals with the viability of using a designed geometrical model consists of plane, polar coordinates (PC) and span length in the determination of bridges deformation. The data of a Tianjin Yonghe bridge located in the southern part of China as collected by RTK-DGPS technique and Accelerometer were used in the analysis. Kalman filter and fast Fourier transformation (FFT) analyses were used to determine the frequency. The results indicate that the designed plane and PC geometrical model are easy to calculate the long-time structural deformation monitoring. In addition, the observed frequency using GPS with the rate of 20 Hz doesn't give correction natural frequency of the observation structures.

Design and Structural Analysis of Electric Saver Box (전력절감기함의 설계 및 구조해석)

  • Lee, Jong-Sun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.13 no.6
    • /
    • pp.2435-2440
    • /
    • 2012
  • In this paper, Solidworks was used to do a conceptional design of an box of an electric saver in order to manufacture an electric saver having a different performance and model. Based on this, analysis was made considering weight concentrated on an box. 3-dimensional finite element analysis code, ANSYS was applied to obtain stress, strain and deformation in order to secure durability and these data was reflected to a detailed drawing.

A Parametric Study on the Shear-deformation Effect for Beck's Column under Follower Force (비보존력을 받는 Beck 기둥의 전단변형효과에 관한 매개변수적 고찰)

  • Lee Jun-Seok;Kim Nam-Il;Kim Moon-Young
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.985-991
    • /
    • 2006
  • For a shear-deformable beam-column element subjected to non-conservative forces. equations of motion and a finite element formulation are presented applying extended Hamilton's principle. The influence of non-conservative force's direction parameter. internal and external damping forces, and shear deformation and rotary inertia effects on divergence and flutter loads of Beck's columns are intensively investigated based on element stiffness. damping and mass matrixes derived for the non-conservative system.

  • PDF

Haptic Simulation for Deformable Object with s-FEM (s-FEM을 이용한 변형체 햅틱 시뮬레이션)

  • Jun Seong-Ki;Choi Jin-Bok;Cho Maeng-Hyo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.373-380
    • /
    • 2006
  • Accurate and fast haptic simulations of deformable objects are desired in many applications such as medical virtual reality. In haptic interactions with a coarse model, the number of nodes near the haptic interaction region is too few to generate detailed deformation. Thus, local refinement techniques need to be developed. Many approaches have employed purely geometric subdivision schemes, but they are not proper in describing the deformation behavior of deformable objects. This paper presents a continuum mechanics-based finite element adaptive method to perform haptic interaction 'with a deformable object. This method superimposes a local fine mesh upon a global coarse model, which consists of the entire deformable object. The local mesh and the global mesh are coupled by the s-version finite element method (s-FEM), which is generally used to enhance accurate solutions near the target points even more. The s-FEM can demonstrate a reliable deformation to users in real-time.

  • PDF

Buckling Loads and Post-Buckling Behavior of Linear Tapered Columns (선형 변단면 기둥의 좌굴하중 및 후좌굴 거동)

  • Lee Tae-Eun;Ahn Dae-Soon;Lee Seung-Woo;Park Kwang-Kyou
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.689-696
    • /
    • 2006
  • This paper deals with the geometrical non-linear analyses of the buckled columns. Differential equations governing elasticas of the buckled columns are derived, in which both effects of taper type and shear deformation are included. Three kinds of taper types such as breadth, depth and square tapers are considered. Differential equations are solved numerically to obtain the elasticas and buckling loads of such columns. End constraint of both clamped ends and both hinged ends are considered. The effects of shear deformation on the elastica of the buckled column and buckling load of column are investigated extensively. Experimental studies are presented that complement theoretical results of non-linear responses of the elasticas.

  • PDF

A Study on Cutting Pattern Generation of Membrane Structures by Using Geometric Line (막 구조물의 측지선을 이용한 재단도 생성에 관한 연구)

  • Ahn, Sang-Gil;Shon, Su-Deok;Kim, Seung-Deog
    • Proceeding of KASS Symposium
    • /
    • 2005.05a
    • /
    • pp.125-132
    • /
    • 2005
  • Membrane structures, a kind of lightweight soft structural system, are used for spatial structures. The material property of the membrane has strong axial stiffness, but little bending stiffness. The design procedure of membrane structures are needed to do shape finding, stress-deformation analysis and cutting pattern generation. In shape finding, membrane structures are unstable structures initially. These soft structures need to be introduced initial stresses because of its initial unstable state, and it happens large deformation phenomenon. And also there are highly varied in their size, curvature and material stiffness. So, the approximation inherent in cutting pattern generation methods is quite different. Therefore, in this study, to find the structural shape after large deformation caused by Initial stress, we need the shape analysis considering geometric nonlinear ten And the geodesic line on surface of initial equilibrium shape and the cutting pattern generation using the geodesic line is introduced.

  • PDF

On the large plastic deformation of tubular beams under impact loading

  • Wang, B.
    • Structural Engineering and Mechanics
    • /
    • v.3 no.5
    • /
    • pp.463-474
    • /
    • 1995
  • When a tubular cantilever beam is loaded by a dynamic force applied transversely at its tip, the strain hardening of the material tends to increase the load carrying capacity and local buckling and cross-sectional overlization occurring in the tube section tends to reduce the moment carrying capacity and results in structural softening. A theoretical model is presented in this paper to analyze the deformation of a tubular beam in a dynamic response mode. Based on a large deflection analysis, the hardening/softening M-${\kappa}$ relationship is introduced. The main interest is on the curvature development history and the deformed configuration of the beam.

In-Plane Vibrations of Curved Timoshenko Beams with Elastic Springs at Both Ends (탄성스프링으로 지지된 곡선형 Timoshenko 보의 면내 자유진동)

  • Oh, Sang-Jin;Mo, Jeong-Man;Kang, Hee-Jong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.105-110
    • /
    • 2007
  • The differential equations governing free, in-plane vibrations of circular curved beams with elastic springs at beth ends, including the effects of axial deformation, rotatory inertia and shear defamation. are solved numerically using the corresponding boundary conditions. The lowest three natural frequencies are calculated over a wide range of non-dimensional system parameters, the radial, tangential and rotational spring parameters, the subtended angle, the slenderness ratio and the shear parameter.

  • PDF