• Title/Summary/Keyword: Structural damage analysis

Search Result 1,629, Processing Time 0.028 seconds

Damage Detection in Bridges Using Modal Flexibility Matrices Under Temperature Variation (상시 온도변화 효과를 고려한 모드 유연도행렬 기반의 교량의 손상탐색기법)

  • Koo, Ki-Young;Lee, Jong-Jae;Yun, Chung-Bang
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.651-656
    • /
    • 2007
  • Changes in measured structural responses induced by a damage could be significantly smaller than those by environmental effects such as temperature and temperature gradients. It is highly desirable to develop a methodology to distinguish the changes due to the structural damage from those by the environmental variations. In this study, a novel method to extract the damage-induced deflection under temperature variations is presented using the outlier analysis on the deflections obtained using the modal flexibility matrices. The main idea is that temperature change in a bridge would produce global increase or decrease in deflections over the whole bridge while structural damages may cause local variations in deflections near the damage locations. Hence, the correlation between the deflection measurements may show high abnormality near the damage locations. A series of laboratory tests were carried out on a bridge model with a steel box-girder for 14 days. It has been found that the damage existence assessment and localization can carried out for a case with relatively small damage under the temperature variations

  • PDF

Seismic Damage Assessment and Nonlinear Structural Identification Using Measured Seismic Responses (실측 지진응답을 이용한 지진손상도 평가 및 소성모형 추정)

  • 이형진;김남식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.7-15
    • /
    • 2002
  • In this paper, the nonlinear parameter estimation method using the estimated hysteresis of each structural members was studied for the purpose of efficient seismic damage prediction and estimation of MDOF nonlinear structural model in the shaking table test. The hysteresis of each structural members can be obtained by the conversion of measured response histories into relative motions of each structural members and member forces. These hysteresis can be used to evaluate various kinds of damage indices of each structural members. The MDOF nonlinear structural model for further analysis(re-analysis) can be easily reconstructed using estimated nonlinear structural parameters of each structural members. To demonstrate the proposed techniques, several numerical and experimental example analyses are carried out. The results indicate that the proposed method can be very useful to assess local seismic damages of structures.

Evaluation of scalar structure-specific ground motion intensity measures for seismic response prediction of earthquake resistant 3D buildings

  • Kostinakis, Konstantinos G.;Athanatopoulou, Asimina M.
    • Earthquakes and Structures
    • /
    • v.9 no.5
    • /
    • pp.1091-1114
    • /
    • 2015
  • The adequacy of a number of advanced earthquake Intensity Measures (IMs) to predict the structural damage of earthquake resistant 3D R/C buildings is investigated in the present paper. To achieve this purpose three symmetric in plan and three asymmetric 5-storey R/C buildings are analyzed by nonlinear time history analysis using 74 bidirectional earthquake records. The two horizontal accelerograms of each ground motion are applied along the structural axes of the buildings and the structural damage is expressed in terms of the maximum and average interstorey drift as well as the overall structural damage index. For each individual pair of accelerograms the values of the aforementioned seismic damage measures are determined. Then, they are correlated with several strong motion scalar IMs that take into account both earthquake and structural characteristics. The research identified certain IMs which exhibit strong correlation with the seismic damage measures of the studied buildings. However, the degree of correlation between IMs and the seismic damage depends on the damage measure adopted. Furthermore, it is confirmed that the widely used spectral acceleration at the fundamental period of the structure is a relatively good IM for medium rise R/C buildings that possess small structural eccentricity.

A comparative analysis of structural damage detection techniques by wavelet, kurtosis and pseudofractal methods

  • Pakrashi, Vikram;O'Connor, Alan;Basu, Biswajit
    • Structural Engineering and Mechanics
    • /
    • v.32 no.4
    • /
    • pp.489-500
    • /
    • 2009
  • The aim of this paper is to compare wavelet, kurtosis and pseudofractal based techniques for structural health monitoring in the presence of measurement noise. A detailed comparison and assessment of these techniques have been carried out in this paper through numerical experiments for the calibration of damage extent of a simply supported beam with an open crack serving as an illustrative example. The numerical experiments are deemed critical due to limited amount of experimental data available in the field of singularity based detection of damage. A continuous detectibility map has been proposed for comparing various techniques qualitatively. Efficiency surfaces have been constructed for wavelet, kurtosis and pseudofractal based calibration of damage extent as a function of damage location and measurement noise level. Levels of noise have been identified for each technique where a sudden drop of calibration efficiency is observed marking the onset of damage masking regime by measurement noise.

Analysis of a Structural Damage Detection Using Sensitivity Analysis (감도해석을 이용한 구조물의 손상위치 및 크기해석)

  • 이정윤
    • Transactions of the Korean Society of Machine Tool Engineers
    • /
    • v.12 no.6
    • /
    • pp.50-55
    • /
    • 2003
  • This study proposed the analysis of damage detection due to the change of the stiffness of structure by using the original and modified dynamic characteristics. The present approach allows the use of composite data which consist of eigenvalues and eigenvectors. The suggested method is applied to examples of a cantilever and 3 degree of freedom system by modifying the stiffness. The predicted damage detections are in good agreement with these from the structural reanalysis using the modified stiffness.

Novel approach for early damage detection on rotor blades of wind energy converters

  • Zerbst, Stephan;Tsiapoki, Stavroula;Rolfes, Raimund
    • Smart Structures and Systems
    • /
    • v.14 no.3
    • /
    • pp.419-444
    • /
    • 2014
  • Within this paper a new approach for early damage detection in rotor blades of wind energy converters is presented, which is shown to have a more sensitive reaction to damage than eigenfrequency-based methods. The new approach is based on the extension of Gasch's proportionality method, according to which maximum oscillation velocity and maximum stress are proportional by a factor, which describes the dynamic behavior of the structure. A change in the proportionality factor can be used as damage indicator. In addition, a novel deflection sensor was developed, which was specifically designed for use in wind turbine rotor blades. This deflection sensor was used during the experimental tests conducted for the measurement of the blade deflection. The method was applied on numerical models for different damage cases and damage extents. Additionally, the method and the sensing concept were applied on a real 50.8 m blade during a fatigue test in the edgewise direction. During the test, a damage of 1.5 m length was induced on the upper trailing edge bondline. Both the initial damage and the increase of its length were successfully detected by the decrease of the proportionality factor. This decrease coincided significantly with the decrease of the factor calculated from the numerical analyses.

Condition Assessment Models and Fuzzy Reliability Analysis of Structural Systems (구조시스템의 퍼지신뢰성해석 및 상태평가모델)

  • 이증빈;손용우;박주원
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1998.10a
    • /
    • pp.61-68
    • /
    • 1998
  • It has become important to evaluate the qualitive reliability and condition assessment of existing structural systems in order to establish a rational program for repair and maintenance. Since most of if existing structural system may suffer from defect corrosion and damage, it is necessary to account for their effects in fuzzy reliability analysis, In this paper, an attempt is made to develope a reliability analysis for damaged structural systems using failure possibility theory. Damage state is specified in terms of linguistic valiables using natural language information and numerical information, which are defined by fuzzy sets. Using a subjective condition index of failure possibility and information of the damage state is introduced into the calculation of failure probability. The subjective condition index of quantitative and qualitative analysis method is newly proposed based on the fuzzy set operations, namely logical product, drastic product, logical sum and drastic sum

  • PDF

A novel approach to damage localisation based on bispectral analysis and neural network

  • Civera, M.;Fragonara, L. Zanotti;Surace, C.
    • Smart Structures and Systems
    • /
    • v.20 no.6
    • /
    • pp.669-682
    • /
    • 2017
  • The normalised version of bispectrum, the so-called bicoherence, has often proved a reliable method of damage detection on engineering applications. Indeed, higher-order spectral analysis (HOSA) has the advantage of being able to detect non-linearity in the structural dynamic response while being insensitive to ambient vibrations. Skewness in the response may be easily spotted and related to damage conditions, as the majority of common faults and cracks shows bilinear effects. The present study tries to extend the application of HOSA to damage localisation, resorting to a neural network based classification algorithm. In order to validate the approach, a non-linear finite element model of a 4-meters-long cantilever beam has been built. This model could be seen as a first generic concept of more complex structural systems, such as aircraft wings, wind turbine blades, etc. The main aim of the study is to train a Neural Network (NN) able to classify different damage locations, when fed with bispectra. These are computed using the dynamic response of the FE nonlinear model to random noise excitation.

Optimum Design of Structural Monitoring System using Artificial Neural Network and Multilevel Sensitivity Analysis (다단계민감도 분석 및 인공신경망을 이용한 최적 계측시스템 선정기법)

  • 김상효;김병진
    • Computational Structural Engineering
    • /
    • v.10 no.4
    • /
    • pp.303-313
    • /
    • 1997
  • Though many techniques for the damage assessment of structures have been studied recently, most of them can be only applied to simple structures. Therefore, practical damage assessment techniques that evaluate the damage location and the damage state for large structures need to be developed. In this study, a damage assessment technique using a neural network is developed, in which the bilevel damage assessment procedure is proposed to evaluate the damage of a large structure from the limited monitoring data. The procedure is as follows ; first, for the rational selection of damage critical members, the members that affect the probability of failure or unusual structural behavior are selected by sensitivity analysis. Secondly, the monitoring points and the number of sensors that are sensitive to the damage severity of the selected members are also selected through the sensitivity analysis with a proposed sensitivity measurement format. The validity and applicability of the developed technique are demonstrated by various examples, and it has been shown that the practical information on the damage state of the selected critical members can be assessed even though the limited monitoring data have been used.

  • PDF

Model-Based Damage Detection Methods for Structural Health Monitoring of PSC Bridges (PSC교량의 구조건전성 모니터링을 위한 모델기반 손상검색기법)

  • 박재형;이병준;김정태
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.550-557
    • /
    • 2004
  • In this paper, structural damage in PSC bridges is monitored by using model-based damage detection methods. First numerical experiments on the test structure are described. Dynamic responses of the test structures are obtained fur several damage scenarios. The change in natural frequency and the change in nude shape curvature are selected as features to represent the states of the structure. Next a damage localization algorithm from monitoring the changes in natural frequency is outlined. Also, the damage localization algorithm from monitoring the changes in nude shapes is outlined. Finally, the damage localization algorithms are used to predict damage in the test structure. The results of the analysis indicate that the model-based damage detection methods correctly predicted damage in the test structure.

  • PDF