• Title/Summary/Keyword: Structural composites

Search Result 942, Processing Time 0.03 seconds

Evaluation of Structural Performance of 3D Printed Composite Rudder according to Internal Topology Shape (내부 위상 형상에 따른 3D 프린트 복합재 방향타의 구조 성능 평가)

  • Young-Jae Cho;Hyoung-Seock Seo;Hui-Seung Park
    • Composites Research
    • /
    • v.36 no.6
    • /
    • pp.454-460
    • /
    • 2023
  • Recently, regulations on greenhouse gas emissions have been strengthened, and the International Maritime Organization (IMO) has been strengthening greenhouse gas regulations with a goal of net 'zero' emissions by 2050. In addition, in the shipbuilding/offshore sector, it is important to reduce operating costs, such as improving propulsion efficiency and lightening structures. In this regard, research is currently being conducted on topology optimization using 3D printed composite materials to satisfy structural lightness and high rigidity. In this study, three topology shapes (hexagonal, square, and triangular) were applied to the interior of a rudder, a ship structure, using 3D printed composite materials. Structural analysis was performed to determine the appropriate shape for the rudder. CFD analysis was performed at 10° intervals from 0° to 30° for each rudder angle under the condition of 8 knots, and the load conditions were set based on the CFD analysis results. As a result of the structural analysis considering the internal topology shape of the rudder, it was confirmed that the triangular, square, and hexagonal topology shapes have excellent performance. The rudder with a square topology shape weighs 78.5% of the rudder with a triangular shape, and the square topology shape is considered to superior in terms of weight reduction.

Seismic performance of RC bridge piers subjected to moderate earthquakes

  • Chung, Young Soo;Park, Chang Kyu;Lee, Dae Hyoung
    • Structural Engineering and Mechanics
    • /
    • v.24 no.4
    • /
    • pp.429-446
    • /
    • 2006
  • Experimental investigation was conducted to evaluate the seismic ductility of earthquake-experienced concrete columns with an aspect ratio of 2.5. Eight circular concrete columns with a diameter of 600 mm were constructed with three test parameters: confinement ratio, lap-splice of longitudinal bars, and retrofitting with Fiber Reinforced Polymer (FRP) materials. The objective of this research is to examine the seismic performance of RC bridge piers subjected to a Quasi static test (QST), which were preliminary tested under a series of artificial earthquake motions referred to as a Pseudo dynamic test (PDT). The seismic enhancement effect of FRP wrap was also investigated on these RC bridge piers. Six specimens were loaded to induce probable damage by four series of artificial earthquakes, which were developed to be compatible with earthquakes in the Korean peninsula by the Korea Highway Corporation (KHC). Directly after the PDT, six earthquake-experienced columns were subjected to inelastic cyclic loading under a constant axial load of $0.1{f_c}^{\prime}A_g$. Two other reference specimens without the PDT were also subjected to similar quasi-static loads. Test results showed that specimens pre-damaged by moderate artificial earthquakes generally demonstrated good residual seismic performance, which was similar to the corresponding reference specimen. Moreover, RC bridge specimens retrofitted with wrapping fiber composites in the potential plastic hinge region exhibited enhanced flexural ductility.

Structural Performance of Stud Shear Connections using SHCC between Existing School Building Frame and Seismic Retrofitting Elements (기존 학교건물 골조와 내진보강요소 일체화를 위한 변형경화형 시멘트 복합체를 적용한 스터드 전단 접합부의 구조성능)

  • Kim, Sung-Ho;Yun, Hyun-Do
    • Journal of the Korean Institute of Educational Facilities
    • /
    • v.20 no.4
    • /
    • pp.35-43
    • /
    • 2013
  • Some results of experimental investigation conducted to assess the effect of cement composite strength and ductility on the shear behavior and crack-damage mitigation of stud connections between existing reinforced concrete frame in school buildings and seismic strengthening elements from cyclically direct shear tests are described. The cement composite strengths include 50 for medium strength and 70 MPa for high strength. Two types of cement composites, strain-hardening cement composite (SHCC) and non-shrinkage mortar, are used for stud shear connection specimens. The special SHCCs are reinforced with hybrid 0.2% polyethylene (PE) and 1.3% polyvinyl alcohol (PVA) fibers at the volume fraction and exhibits tensile strain capacity ranging from 0.2 to 0.5%. Test result indicates that SHCC improves the seismic performance and crack-damage mitigation of stud shear connections compared with stud connections with non-shrinkage mortar. However, the performance enhancement in SHCC stud connections with transverse and longitudinal reinforcements is less notable for those without additional reinforcement.

Prediction of through the width delamination growth in post-buckled laminates under fatigue loading using de-cohesive law

  • Hosseini-Toudeshky, Hossein;Goodarzi, M. Saeed;Mohammadi, Bijan
    • Structural Engineering and Mechanics
    • /
    • v.48 no.1
    • /
    • pp.41-56
    • /
    • 2013
  • Initiation and growth of delamination is a great concern of designers of composite structures. Interface elements with de-cohesive constitutive law in the content of continuum damage mechanics can be used to predict initiation and growth of delamination in single and mixed mode conditions. In this paper, an interface element based on the cohesive zone method has been developed to simulate delaminatoin growth of post-buckled laminate under fatigue loading. The model was programmed as the user element and user material by the "User Programmable Features" in ANSYS finite element software. The interface element is a three-dimensional 20 node brick with small thickness. Because of mixed-mode condition of stress field at the delamination-front of post-buckled laminates, a mixed-mode bilinear constitutive law has been used as user material in this model. The constitutive law of interface element has been verified by modelling of a single element. A composite laminate with initial delamination under quasi-static compressive Loading available from literature has been remodeled with the present approach. Moreover, it will be shown that, the closer the delamination to the free surface of laminate, the slower the delamination growth under compressive fatigue loading. The effects of laminate configuration on delamination growth are also investigated.

Fabrication of barium titanate-bismuth ferrite fibers using electrospinning

  • Baji, Avinash;Abtahi, Mojtaba
    • Advances in nano research
    • /
    • v.1 no.4
    • /
    • pp.183-192
    • /
    • 2013
  • One-dimensional multiferroic nanostructured composites have drawn increasing interest as they show tremendous potential for multifunctional devices and applications. Herein, we report the synthesis, structural and dielectric characterization of barium titanate ($BaTiO_3$)-bismuth ferrite ($BiFeO_3$) composite fibers that were obtained using a novel sol-gel based electrospinning technique. The microstructure of the fibers was investigated using scanning electron microscopy and transmission electron microscopy. The fibers had an average diameter of 120 nm and were composed of nanoparticles. X-ray diffraction (XRD) study of the composite fibers demonstrated that the fibers are composed of perovskite cubic $BaTiO_3$-$BiFeO_3$ crystallites. The magnetic hysteresis loops of the resultant fibers demonstrated that the fibers were ferromagnetic with magnetic coercivity of 1500 Oe and saturation magnetization of 1.55 emu/g at room temperature (300 K). Additionally, the dielectric response of the composite fibers was characterized as a function of frequency. Their dielectric permittivity was found to be 140 and their dielectric loss was low in the frequency range from 1000 Hz to $10^7$ Hz.

Seismic performance of RC frame structures strengthened by HPFRCC walls

  • Yun, Hyun-Do;Hwang, Jin-Ha;Kim, Mee-Yeon;Choi, Seung-Ho;Park, Wan-Shin;Kim, Kang Su
    • Structural Engineering and Mechanics
    • /
    • v.75 no.3
    • /
    • pp.389-399
    • /
    • 2020
  • An infill wall made of high-performance fiber-reinforced cementitious composites (HPFRCC) was utilized in this study to strengthen the reinforced concrete (RC) frame structures that had not been designed for seismic loads. The seismic performance of the RC frame structures strengthened by the HPFRCC infill walls was investigated through the experimental tests, and the test results showed that they have improved strength and deformation capabilities compared to that strengthened by the RC infill wall. A simple numerical modeling method, called the modified longitudinal and diagonal line element model (LDLEM), was introduced to consider the seismic strengthening effect of the infill walls, in which a section aggregator approach was also utilized to reflect the effect of shear in the column members of the RC frames. The proposed model showed accurate estimations on the strength, stiffness, and failure modes of the test specimens strengthened by the infill walls with and without fibers.

Size-dependent dynamic stability of a FG polymer microbeam reinforced by graphene oxides

  • Wang, Yuewu;Xie, Ke;Fu, Tairan
    • Structural Engineering and Mechanics
    • /
    • v.73 no.6
    • /
    • pp.685-698
    • /
    • 2020
  • The dynamic stability of a functionally graded polymer microbeam reinforced by graphene oxides subjected to a periodic axial force is investigated. The microbeam is assumed to rest on an elastic substrate and is subjected to various immovable boundary restraints. The weight fraction of graphene oxides nanofillers is graded across the beam thickness. The effective Young's modulus of the functionally graded graphene oxides reinforced composite (FG-GORC) was determined using modified Halpin-Tsai model, with the mixture rule used to evaluate the effective Poisson's ratio and the mass density. An improved third order shear deformation theory (TSDT) is used in conjunction with the Chebyshev polynomial-based Ritz method to derive the Mathieu-Hill equations for dynamic stability of the FG-GORC microbeam, in which the scale effect is taken into account based on modified couple stress theory. Then, the Mathieu-Hill equation was solved using Bolotin's method to predict the principle unstable regions of the FG-GORC microbeams. The numerical results show the effects of the small scale, the graphene oxides nanofillers as well as the elastic substrate on the dynamic stability behaviors of the FG-GORC microbeams.

Fabrication of Porous Ceramic Materials for Biomedical and Environmental Applications

  • Lee, Byong-Taek
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2009.11a
    • /
    • pp.18.2-18.2
    • /
    • 2009
  • Ceramics have some properties that are unmatched by other kind of materials like metals or polymers. The ability of high thermal and chemical resistance and in case of being superior in specific mechanical properties makes the ceramic materials suitable for arange of applications. The microstructure and morphology of a material arguably permit the use of many advanced application otherwise difficult to achieve.Porous structures have some important applications in biomedical and environmental field. For human hard tissue reconstruction and augmentation procedure suitable biomaterials are used with a desirable porosity. A range of porous bioceramics were fabricated with tailored design to meet the demand of specific applications. Channeled and interconnected porosity was introduced in alumina, zirconia, and hydroxyapatite or tri calcium phosphate ceramics by different methods like multi-pass extrusion process, bubble formation in viscous slurry,slurry dripping in immiscible liquid, sponge replica method etc. The detailed microstructural and morphological investigations were carried out to establish the unique features of each method and the developed systems. For environmental filters the porous structures were also very important. We investigated a range of channeled and randomly porous silicon based ceramic composites to enhance the material stability and filtration efficiency by taking advantage of the material chemistry of the element. Detailed microstructural and mechanical characterizations were carried out for the fabricated porous filtration systems.

  • PDF

Dynamic Analysis of Composite Satellite Antenna Structure for Sine Vibration Test (복합재료 위성안테나의 진동시험을 위한 구조 동해석)

  • ;;;;;Horst Stockburger
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.05a
    • /
    • pp.119-122
    • /
    • 2002
  • The vibration qualification test of satellite antenna is required to verify that there will be no structural damage due to the severe vibration caused by the launch of satellite. For the qualification test, reasonable test load condition needs to be introduced by dynamic analysis. The present work has been performed to provide an understanding how the qualification test load can be evaluated by the results of both normal mode and sine vibration analyses with notching technique for a composite Ka-band antenna structure.

  • PDF

A Study on Fatigue Crack Propagation Behavior in Random Short-Fiber SMC Composites (비규칙 단섬유강화 SMC 복합재료의 피로균열 전파거동에 관한 연구)

  • Kim, Jae-Dong;Koh, Sung-Wi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.2
    • /
    • pp.204-212
    • /
    • 1990
  • The SMC composite, now being considered in certain structural applications, is anticipated to experience repeated loading during service. Thus, understanding of the fatigue behavior is essential in proper use of the composite material. In this paper, using the SMC composite composed of E-glass chopped strand and unsaturated polyester resin three point bending fatigue tests are carried out to investigate the fatigue crack propagating behavior under various cyclic stresses and fatigue damage of various microcrack forms. The following results are obtained from this study; 1) Most of the total fatigue life of the SMC composite is consumed at the initial extension or the growth of the macroscopic crack. 2) A Paris' type power-law relationship between the crack propagation rate and stress intensity factor range is obtained, and the value of material constant m is much higher (m=9~11)than that of other metals. 3) In case of high cyclic stress the fatigue damage show high microcrack density and short crack length, but in case of low cyclic stress does it vice versa. 4) Fatigue damage is characterized by microcrack density, crack length and distribution of crack orientation.

  • PDF