• 제목/요약/키워드: Structural composites

검색결과 942건 처리시간 0.03초

Morphology and Charge Transport Properties of Chemically Synthesized Polyaniline-poly(ε-caprolactone) Polymer Films

  • Basavaraja, C.;Kim, Dae-Gun;Kim, Won-Jeong;Kim, Ji-Hyun;Huh, Do-Sung
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.927-933
    • /
    • 2011
  • Conducting polyaniline-poly($\varepsilon$-caprolactone) polymer composites were synthesized via in situ deposition techniques. By dissolving different weight percentages of poly($\varepsilon$-caprolactone) (PCL) (10%, 20%, 30%, 40%, and 50%), the oxidative polymerization of aniline was achieved using ammonium persulfate as an oxidant. FTIR, UV-vis spectra, and X-ray diffraction studies support a strong interaction between polyaniline (PANI) and PCL. Structural morphology of the PANI-PCL polymer composites was studied using scanned electron microscopy (SEM) and transmittance electron microscopy (TEM), and thermal stability was analyzed by thermogravimetric analysis (TGA) technique. The temperature-dependent DC conductivity of PANI-PCL polymer composite films was studied in the range of 305-475 K, which revealed a semiconducting behavior in the transport properties of the polymer films. Conductivity increased with the increase of PCL in below critical level, however conductivity of the polymer film was decreased with increase of PCL concentration higher than the critical value.

Oxidation Behaviors of SiCf/SiC Composites Tested at High Temperature in Air by an Ablation Method

  • Park, Ji Yeon;Kim, Daejong;Lee, Hyeon-Geun;Kim, Weon-Ju;Pouchon, Manuel
    • 한국세라믹학회지
    • /
    • 제55권5호
    • /
    • pp.498-503
    • /
    • 2018
  • Using the thermal ablation method, the oxidation behavior of $SiC_f/SiC$ composites was investigated in air and in the temperature range of $1,300^{\circ}C$ to $2,000^{\circ}C$. At the relatively low temperature of $1,300^{\circ}C$, passive oxidation, which formed amorphous phase, predominantly occurred in the thermal ablation test. When the oxidation temperature increased, SiO (g) and CO (g) were formed by active oxidation and the dense oxide layer changed to a porous one by vaporization of gas phases. In the higher temperature oxidation test, both active oxidation due to $SiO_2$ decomposition on the surface of the oxide layer and active/passive oxidation transition due to interfacial reaction between oxide and base materials such as SiC fiber and matrix phase simultaneously occurred. This was another cause of high temperature degradation of $SiC_f/SiC$ composites.

High Temperature Fiber Fragmentation Characteristics of SiC Single-Fiber Composite With Titanium Matrices

  • Matikas, Theodore E.
    • Advanced Composite Materials
    • /
    • 제17권1호
    • /
    • pp.75-87
    • /
    • 2008
  • Aerospace structural applications, along with high performance marine and automotive applications, require high-strength efficiency, which can be achieved using metal matrix composites (MMCs). Rotating components, such as jet-engine blades and gas turbine parts, require materials that maximize strength efficiency and metallurgical stability at elevated temperatures. Titanium matrix composites (TMCs) are well suited in such applications, since they offer an enhanced resistance to temperature effects as well as corrosion resistance, in addition to optimum strength efficiency. The overall behavior of the composite system largly depends on the properties of the interface between fiber and matrix. Characterization of the fiber.matrix interface at operating temperatures is therefore essential for the developemt of these materials. The fiber fragmentation test shows good reproducibility of results in determining interface properties. This paper deals with the evaluation of fiber fragmentation characteristics in TMCs at elevated temperature and the results are compared with tests at ambient temperature. It was observed that tensile testing at $650^{\circ}C$ of single-fiber TMCs led to limited fiber fragmentation behavior. This indicates that the load transfer from the matrix to the fiber occurs due to interfacial friction, arising predominantly from mechanical clamping of the fiber by radial compressive residual and Poisson stresses. The present work also demonstrates that composite processing conditions can significantly affect the nature of the fiber.matrix interface and the resulting fragmentation of the fiber.

Evaluation of homogenized thermal conductivities of imperfect carbon-carbon textile composites using the Mori-Tanaka method

  • Vorel, Jan;Sejnoha, Michal
    • Structural Engineering and Mechanics
    • /
    • 제33권4호
    • /
    • pp.429-446
    • /
    • 2009
  • Three-scale homogenization procedure is proposed in this paper to provide estimates of the effective thermal conductivities of porous carbon-carbon textile composites. On each scale - the level of fiber tow (micro-scale), the level of yarns (meso-scale) and the level of laminate (macro-scale) - a two step homogenization procedure based on the Mori-Tanaka averaging scheme is adopted. This involves evaluation of the effective properties first in the absence of pores. In the next step, an ellipsoidal pore is introduced into a new, generally orthotropic, matrix to make provision for the presence of crimp voids and transverse and delamination cracks resulting from the thermal transformation of a polymeric precursor into the carbon matrix. Other sources of imperfections also attributed to the manufacturing processes, including non-uniform texture of the reinforcements, are taken into consideration through the histograms of inclination angles measured along the fiber tow path together with a particular shape of the equivalent ellipsoidal inclusion proposed already in Sko ek (1998). The analysis shows that a reasonable agreement of the numerical predictions with experimental measurements can be achieved.

Effect of FRP composites on buckling capacity of anchored steel tanks

  • Al-Kashif, M.A.;Ramadan, H.;Rashed, A.;Haroun, M.A.
    • Steel and Composite Structures
    • /
    • 제10권4호
    • /
    • pp.361-371
    • /
    • 2010
  • Enhancement in the seismic buckling capacity of steel tanks caused by the addition of fiber reinforced polymers (FRP) retrofit layers attached to the outer walls of the steel tank is investigated. Three-dimensional non-linear finite element modeling is utilized to perform such analysis considering non linear material properties and non-linear large deformation large strain analysis. FRP composites which possess high stiffness and high failure strength are used to reduce the steel hoop stress and consequently improve the tank capacity. A number of tanks with varying dimensions and shell thicknesses are examined using FRP composites added in symmetric layers attached to the outer surface of the steel shell. The FRP shows its effectiveness in carrying part of the hoop stresses along with the steel before steel yielding. Following steel yielding, the FRP restrains the outward bulging of the tank and continues to resist higher hoop stresses. The percentage improvement in the ultimate base moment capacity of the tank due to the addition of more FRP layers is shown to be as high as 60% for some tanks. The percentage of increase in the tank moment capacity is shown to be dependent on the ratio of the shell thickness to the tank radius (t/R). Finally a new methodology has been explained to calculate the location of Elephant foot buckling and consequently the best location of FRP application.

Modelling and FEA-simulation of the anisotropic damping of thermoplastic composites

  • Klaerner, Matthias;Wuehrl, Mario;Kroll, Lothar;Marburg, Steffen
    • Advances in aircraft and spacecraft science
    • /
    • 제3권3호
    • /
    • pp.331-349
    • /
    • 2016
  • Stiff and light fibre reinforced composites as used in air- and space-craft applications tend to high sound emission. Therefore, the damping properties are essential for the entire structural and acoustic engineering. Viscous damping is an established and reasonably linear model of the dissipation behaviour. Commonly, it is assumed to be isotropic and constant over all modes. For anisotropic materials it depends on the fibre orientation as well as the elastic and thermal material properties. To portray the orthogonal anisotropic behaviour, a model for unidirectional fibre reinforced plastics (frp) has been developed based on the classical laminate theory by ADAMS and BACON starting in 1973. Their approach includes three damping coefficients - for longitudinal damping in fibre direction, damping transversal to the fibres and shear based dissipation. The damping of a laminate is then accumulated layer wise including the anisotropic stiffness. So far, the model has been applied mainly to thermoset matrix materials. In this study, an experimental parameter estimation for different thermoplastic frp with angle ply and cross ply layups was carried out by measuring free vibrations of cantilever beams. The results show potential and limits of the ADAMS/BACON damping criterion. In addition, a possibility of modelling the anisotropic damping is shown. The implementation in standard FEA software is used to study the influence of boundary conditions on the damping properties and numerically estimate the radiated sound power of thin-walled frp parts.

저온 공정용 지르코니아-알루미나 복합 코팅제 연구 (Zirconia-Alumina Composite Coating Materials for Low Temperature Process)

  • 최종완
    • 한국응용과학기술학회지
    • /
    • 제38권6호
    • /
    • pp.1561-1567
    • /
    • 2021
  • 지르코니아 복합체는 지르코니아 전구체, 알루미나 전구체, 그리고 유기 실란의 혼합물을 플라스틱 기판 위에 코팅하여 졸 겔 공정과 저온의 광경화 과정, 그리고 열처리 공정 등 세 단계를 거쳐 합성하였고, FT-IR과 XPS 분석을 통하여 지르코니아 전구체와 알루미나 전구체의 비율에 따라 합성된 복합체내 Zr 원소와 Al 원소 비율이 일치함을 확인하였다. 코팅된 복합체는 파장이 420 nm 이상인 가시광선 영역에서 96 % 이상의 투과도를 보였고, 기계적 강도는 연필 강도 9H 이상을 나타내었다. 특히 지르코니아와 알루미나의 몰 비가 1:4의 비율의 복합 코팅제의 나노 압입 경도가 1.212 GPa로 가장 높은 것으로 확인되었다.

Experimental and Finite Element Analysis of Free Vibration Behaviour of Graphene Oxide Incorporated Carbon Fiber/Epoxy Composite

  • Adak, Nitai Chandra;Uke, Kamalkishor Janardhanji;Kuila, Tapas;Samanta, Pranab;Lee, Joong Hee
    • Composites Research
    • /
    • 제31권6호
    • /
    • pp.311-316
    • /
    • 2018
  • In the present study, the effect of GO in damping capacity of CF/epoxy laminates was studied via free vibration analysis. The composite laminates were manufactured by using vacuum assisted resin transfer molding technique. The damping properties of the prepared hybrid composites were determined in terms of natural frequency and damping ratio in free vibration test. The foremost aspire of this investigation was to compare the vibration properties i.e. natural frequency and modal damping of the prepared composites with the numerical results. The numerical study was carried out via FEA using $ANSYS^{TM}$ workbench software. The parametric study of the numerical models was also studied considering the beam free length and the beam thickness. It was found that the incorporation of GO enhanced the damping capacity of the composite and the variation of natural frequencies in mode1varied by 2-5% compared to the experimental study.

Novel green composite material manufactured by extrusion process from recycled polypropylene matrix reinforced with eucalyptus fibres and granite powder

  • Romulo Maziero;Washington M. Cavalcanti;Bruno D. Castro;Claudia V. Campo, Rubio;Luciano M.G. Vieira;Tulio H. Panzera;Juan C. Campos Rubio
    • Advances in materials Research
    • /
    • 제12권2호
    • /
    • pp.119-131
    • /
    • 2023
  • The development of sustainable composites materials, from recycled polymeric materials and waste from the wood industry and stone processing, allows reducing the volume of these by-products, minimizing impacts on health and the environment. Nowadays, Polypropylene (PP) is the most recycled polymer in industry, while the furniture industry has increasingly used timber felled from sustainable forest plantations as a eucalypt. The powder tailing from the ornamental stone extraction and processing industry is commonly disposed of in the environment without previous treatment. Thus, the technological option for the development of composite materials presents itself as a sustainable alternative for processing and manufacturing industries, enabling the development of new materials with special technical features. The results showed that powder granite particles may be incorporated into the polypropylene matrix associated with short eucalyptus fibres forming green hybrid composites with potential application in structural engineering, such as transport and civil construction industries.

Enhanced thermal conductivity of spark plasma-sintered thorium dioxide-silicon carbide composite fuel pellets

  • Linu Malakkal;Anil Prasad;Jayangani Ranasinghe;Ericmoore Jossou;Lukas Bichler;Jerzy Szpunar
    • Nuclear Engineering and Technology
    • /
    • 제55권10호
    • /
    • pp.3725-3731
    • /
    • 2023
  • Thorium dioxide (ThO2)-silicon carbide (SiC) composite fuel pellets were fabricated via the spark plasma-sintering (SPS) method to investigate the role of the addition of SiC in enhancing the thermal conductivity of ThO2 fuel. SiC particles with an average size of 1㎛ in 10 and 15 vol% were used to manufacture the composite pellets. The changes in the composites' densification, microstructure and thermal conductivity were explored by comparing them with pure ThO2 pellets. The structural and microstructural characterization of the composite pellets has revealed that SPS could manufacture high-quality composite pellets without having any reaction products or intermetallic. The density measurement by the Archimedes principles and the grain size from the electron back-scattered diffraction (EBSD) analysis has indicated that the composites have higher densities and smaller grain sizes than the pellets without SiC addition. Finally, thermal conductivity as a function of temperature has revealed that sintered ThO2-SiC composites showed an increase of up to 56% in thermal conductivity compared to pristine ThO2 pellets.