• Title/Summary/Keyword: Structural and Vibration Analysis

Search Result 2,187, Processing Time 0.027 seconds

Numerical Analysis on the Affection of Lumped Attachments to the Vibration Power Flow in Cross-stiffened Plate (집중 부가물이 보강판의 진동파워 흐름에 미치는 영향에 대한 수치 해석적 고찰)

  • 조대승;정상민;김재홍
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.40 no.1
    • /
    • pp.36-46
    • /
    • 2003
  • To investigate the affection of lumped mass and spring on the vibration power flow of cross-stiffened plate experiencing bending vibration, structural intensity analysis is done using the modal analysis based on assumed mode method. The numerical analysis is carried out varying the mass and spring constant and their attached positions. The results show that both the spring and the mass may cause to large variation of not only vibratory displacement but also vibratory power flow patterns in case of little change of natural frequencies, and the attachments near to excitation location can effectively reduce the magnitude of maximum structural intensity.

Study on Structural Durability Analysis at Bicycle Saddle (자전거 안장에서의 구조적 내구성 해석에 관한 연구)

  • Cho, Jaeung;Han, Moonsik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.21 no.5
    • /
    • pp.104-112
    • /
    • 2013
  • This study investigates the structural analysis result with vibration and fatigue on 3 kinds of bicycle saddle models. When the static load applies on the upper plane of model, maximum stress becomes within the allowable stress in case of model 1. As the value of Stress or deformation becomes lower on the order of model types 1, 2 and 3, these models become more stabilized or safer at durability in this order. On the vibration analysis, model type 1 has the maximum stress or deformation more than 5 times by comparing with model type 1 or 2. Model type 1 becomes most excellent on vibration durability. As maximum displacement due to vibration happens in case of model type 3, it becomes unstabilized. But the stresses of model types 1, 2 and 3 become within the allowable stress and these models are considered to be safe. At the status of the severest fatigue load, model type 3 becomes safer than model type 1 or 2. This study result is applied with the design of safe bicycle saddle and it can be useful to improve the durability by predicting prevention against the deformation due to its vibration and fatigue.

Vibration and Noise Control of Slab Using the Mass Type Damper (질량형 댐퍼를 이용한 바닥판의 진동 및 소음 저감)

  • Hwang, Jae-Seung;Park, Sung-Chul;Kim, Hong-Jin
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2007.04a
    • /
    • pp.597-602
    • /
    • 2007
  • It is proposed to analyze the vibration of slab with MTMD and vibration-induced noise. Substructure synthesis is introduced to develope the interaction between the slab and MTMD which are defined in different space and acoustic power is obtained from the velocity field of slab. Numerical analysis is performed to show that the vibration and noise of slab can be reduced by MTMD. A living room of wall type apartment including the wall and MTMD is modeled and analyzed by FEM program Numerical analysis shows that the vibration and noise control effect is different depending on the location and mass ratio of MTMD. Futhermore, noise is more effectively reduced when the vibration of higher modes of slab are reduced rather than lower modes.

  • PDF

STRUCTURAL SAFTY EVALUATION OF COMPRESSOR DRIVING MOTOR SHAFT SYSTEM (컴프레서 구동용 전동기 축계의 구조 안전성 평가)

  • Jung, Kun-Hwa;Kwak, Ju-Ho;Kim, Byung-Joo;Lee, Jong-Moon
    • Proceedings of the KSME Conference
    • /
    • 2007.05a
    • /
    • pp.1031-1036
    • /
    • 2007
  • Torsional vibration analysis is necessary at design stage to ensure the reliability of a system particularly when the driven machine is a reciprocating compressor. This paper contains the results of torsional vibration analysis and fatigue strength evaluation for 540 kW compressor driving motor. Torsional vibration analysis showed that the $2^{nd}$ torsional mode of the entire shaft system has the possibility of resonance with the $14^{th}$ order excitation of compressor and twin line frequency of motor at operating speed. Therefore, the analyses were required to ensure the structural reliability of the motor. The fatigue strength was evaluated for the shaft and inner fans using the results of forced vibration analysis. It is concluded that the motor has sufficient fatigue strength under normal operating condition.

  • PDF

An Experimental Study on the Vertical Vibration Transfer according to Rahmen Building Structures due to Train Loads (라멘조 건축구조물의 수직진동 전달특성에 관한 실험연구)

  • 전호민
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.469-475
    • /
    • 2004
  • The vibration on building structures due to exciting vibration forces has been studied only for the vibration level on existing buildings. Recently, several researches have been performed on the prediction of vertical vibration on structures by using an analytical method. However, these studies have been focused on mainly the vibration analysis through analytical modeling of structures. This study aims to investigate the dynamic characteristics of vertical vibration transfer from lower stories to upper ones on the Rahmen building structures due to traffic loads. In order to examine the characteristics of vertical vibration transfer, the mode analysis and the impact experiment were conducted several times on one building structures. The results of this study suggest that the characteristics of vertical vibration transfer are different in terms of the type of trains.

  • PDF

Structural Design on Small Scale Sandwich Composite Wind Turbine Blade

  • Seongjin Ahn;Hyunbum Park
    • International Journal of Aerospace System Engineering
    • /
    • v.10 no.2
    • /
    • pp.1-4
    • /
    • 2023
  • Even though the recent development trend of wind turbine systems has been focused on larger MW Classes, the small-scale wind turbine system has been continuously developed because it has some advantages due to easy personnel establishment and use with low cost and energy saving effect. This work is to propose a specific structural design and analysis procedure for development of a low noise 500W class small wind turbine system which will be applicable to relatively low wind speed region like Korea. The proposed structural feature has a skin-spar-foam sandwich composite structure with the E-glass/Epoxy face sheets and the Urethane foam core for lightness, structural stability, low manufacturing cost and easy manufacturing process. Moreover this type of structure has good behaviors for reduction of vibration and noise. Structural analysis including load cases, stress, deformation, buckling and vibration was performed using the Finite Element Method. In order to evaluate the designed blade structure the structural tests were done, and their test results were compared with the estimated results.

A Study on Ensuring Reliability of Hydraulic Pumps for Wheeled Armored Vehicles through Analysis and Testing (차륜형장갑차용 유압펌프의 해석 및 시험을 통한 신뢰성 확보에 관한 연구)

  • Kim, Won-Jae;Lee, Ho-Jun;Choi, Chung-Seok;Seo, Suk-Ho;Choi, Sung-Woong
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.19 no.9
    • /
    • pp.78-84
    • /
    • 2020
  • This paper introduces the structural and vibration analysis performed in the localization development process of hydraulic pumps used in wheeled armored vehicles. The maximum strain, maximum stress, maximum displacement, and minimum safety factor were calculated using structural analysis. Furthermore, it was found that the dangerous resonance frequency was avoided through vibration analysis. In addition, the reliability of the analysis results was verified by passing various tests, such as the actual vibration test and the actual durability test. The developed hydraulic pump is expected to contribute significantly to the maintenance of military vehicles in the future.

Vibration Analysis of Arbitrarily-Shaped Beams (임의 형태를 가진 보의 진동해석)

  • 민경원;강경수;홍성목
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1993.10a
    • /
    • pp.175-180
    • /
    • 1993
  • A new method for the vibration analysis of arbitrarily-shaped beams is proposed on the assumption of imaginary seperation of the beams into prismatic beams and the remaining portions. The stiffness and mass of the beams are devided into two portions according to the seperation. Applying the mode shapes of prismatic beams and Lagrange's equations give new characteristics equation. This equation has a low dimension of matrix with the coupling terms showing the effect of remaining portions on the vibration of arbitrarily-shaped beams

  • PDF

Reduction of Vibration and Shock in an HDD Car-holder (차량용 HDD 거치대의 진동/충격 저감)

  • Im, Hyung-Bin;Park, Ki-Sun;Kim, Doo-Hwan;Chung, Jin-Tai
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.11
    • /
    • pp.1192-1198
    • /
    • 2008
  • In this paper, the vibration and shock of an HDD car-holder are reduced through vibration analysis and a structural modification. In order to identify the exciting frequency components of vibration and shock, vibration signals are measured and analyzed from the wind shield or dashboard. In addition, the modal test for the current HDD car-holder is performed to investigate the dynamic characteristics of the car-holder. From these experiments, it is found that the exciting frequencies coincide to the natural frequencies of the car-holder. For the purpose of avoiding resonance, some FEM simulations are carried out and then structural modifications are made for the car-holder. Based on the results of simulations, a prototype of new car-holder are manufactured and tested to demonstrate the reduction of vibration and shock. It is verified by the test that a considerable amount of vibration and shock are reduced.

Structural Vibration Analysis of Electronic Equipment for Satellite under Launch Environments (발사환경에 대한 위성 전장품의 구조진동 해석)

  • 정일호;박태원;한상원;서종휘;김성훈
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.8
    • /
    • pp.120-128
    • /
    • 2004
  • The impulse between launch vehicle and atmosphere can generate a lot of noise and vibration during the process of launching a satellite. Structurally, the electronic equipment of a satellite consists of an aluminum case containing PCB. Each PCB has resistors and IC. Noise and vibration of the wide frequency band are transferred to the inside of fairing, subsequently creating vibration of the electronic equipment of the satellite. In this situation, random vibration can cause malfunctioning of the electronic equipment of the device. Furthermore, when the frequency of random vibration meets with natural frequency of PCB, fatigue fracture may occur in the part of solder joint. The launching environment, thus, needs to be carefully considered when designing the electronic equipment of a satellite. In general, the safety of the electronic equipment is supposed to be related to the natural frequency, shapes of mode and dynamic deflection of PCB in the electronic equipment. Structural vibration analysis of PCB and its electronic components can be performed using either FEM or vibration test. In this study, the natural frequency and dynamic deflection of PCB are measured by FEM, and the safety of the electronic components of PCB is evaluated according to the results. This study presents a unique method for finite element modeling and analysis of PCB and its electronic components. The results of FEA are verified by vibration test. The method proposed herein may be applicable to various designs ranging from the electronic equipments of a satellite to home electronics.