• 제목/요약/키워드: Structural and Aerodynamic Design

검색결과 197건 처리시간 0.023초

Validating the Structural Behavior and Response of Burj Khalifa: Synopsis of the Full Scale Structural Health Monitoring Programs

  • Abdelrazaq, Ahmad
    • 국제초고층학회논문집
    • /
    • 제1권1호
    • /
    • pp.37-51
    • /
    • 2012
  • New generation of tall and complex buildings systems are now introduced that are reflective of the latest development in materials, design, sustainability, construction, and IT technologies. While the complexity in design is being overcome by the availability and advances in structural analysis tools and readily advanced software, the design of these buildings are still reliant on minimum code requirements that yet to be validated in full scale. The involvement of the author in the design and construction planning of Burj Khalifa since its inception until its completion prompted the author to conceptually develop an extensive survey and real-time structural health monitoring program to validate all the fundamental assumptions mad for the design and construction planning of the tower. The Burj Khalifa Project is the tallest structure ever built by man; the tower is 828 meters tall and comprises of 162 floors above grade and 3 basement levels. Early integration of aerodynamic shaping and wind engineering played a major role in the architectural massing and design of this multi-use tower, where mitigating and taming the dynamic wind effects was one of the most important design criteria established at the onset of the project design. Understanding the structural and foundation system behaviors of the tower are the key fundamental drivers for the development and execution of a state-of-the-art survey and structural health monitoring (SHM) programs. Therefore, the focus of this paper is to discuss the execution of the survey and real-time structural health monitoring programs to confirm the structural behavioral response of the tower during construction stage and during its service life; the monitoring programs included 1) monitoring the tower's foundation system, 2) monitoring the foundation settlement, 3) measuring the strains of the tower vertical elements, 4) measuring the wall and column vertical shortening due to elastic, shrinkage and creep effects, 5) measuring the lateral displacement of the tower under its own gravity loads (including asymmetrical effects) resulting from immediate elastic and long term creep effects, 6) measuring the building lateral movements and dynamic characteristic in real time during construction, 7) measuring the building displacements, accelerations, dynamic characteristics, and structural behavior in real time under building permanent conditions, 8) and monitoring the Pinnacle dynamic behavior and fatigue characteristics. This extensive SHM program has resulted in extensive insight into the structural response of the tower, allowed control the construction process, allowed for the evaluation of the structural response in effective and immediate manner and it allowed for immediate correlation between the measured and the predicted behavior. The survey and SHM programs developed for Burj Khalifa will with no doubt pioneer the use of new survey techniques and the execution of new SHM program concepts as part of the fundamental design of building structures. Moreover, this survey and SHM programs will be benchmarked as a model for the development of future generation of SHM programs for all critical and essential facilities, however, but with much improved devices and technologies, which are now being considered by the author for another tall and complex building development, that is presently under construction.

허브 측 선단 수정에 따른 터빈 로터의 공력 특성에 대한 수치적 연구 (Numerical Study of Aerodynamics of Turbine Rotor with Leading Edge Modification Near Hub)

  • 김대현;이원석;정진택
    • 대한기계학회논문집A
    • /
    • 제37권8호
    • /
    • pp.1007-1013
    • /
    • 2013
  • 이 논문은 터빈 로터의 형상변화에 따른 공력 특성에 대하여 분석하였다. 본 논문의 터빈은 헬리콥터의 보조동력 장치로 사용되는 소형엔진이다. 소형엔진은 팁 형상의 구조적 취약성 때문에 성능을 향상시키기 어렵다. 그러므로, 터빈의 허브를 개선하는 것이 여러 가지 측면에서 유리하다. 터빈의 작동유체는 고온 고압의 가스이다. 터빈표면의 열전달률이 고려되었을 때, 열부하에 의한 블레이드의 손상을 줄이기 위해서는 블레이드 표면의 열전달률 분포를 고찰하여야 한다. 수치모사 결과를 검증용 실험값과 비교하였을 때, SST난류모델은 공력 특성을 잘 반영하고 열전달 예측성능도 우수하였다. 결론적으로, 허브측 선단에서 구륜설계(bulbous design)를 적용하였을 때 공력효율이 향상되었고, 전체 공력 손실 중 끝벽 손실은 15% 감소되었다.

멀티콥터형 무인기용 고효율 프로펠러 개발 (High-efficiency propeller development for Multicopter type UAV)

  • 위성용;강희정;김태주;기영중;송재림
    • 한국항공우주학회지
    • /
    • 제45권7호
    • /
    • pp.581-593
    • /
    • 2017
  • 멀티콥터형 무인기용 고효율 프로펠러 개발을 위하여 공기역학 및 구조역학적 성능을 고려하여 설계 해석 시험을 수행하였다. 고효율 프로펠러 설계를 위해 익형 형상 결정은 최적설계기법을 적용하였으며, 프로펠러의 3차원 플랜폼은 유도동력을 최소화하기 위해 설계되었다. 도출된 형상은 구조설계 및 해석을 통하여 비행적합성을 판단하였으며, 해석적으로 설계된 형상에 대한 성능을 확인하기 위해 회전시험을 수행하였다. 본 논문에서는 이와 같은 설계 해석 시험 방법을 이용하여 절차적 프로펠러 설계방법론을 제시하고 있다.

Wind-induced tall building response: a time-domain approach

  • Simiu, Emil;Gabbai, Rene D.;Fritz, William P.
    • Wind and Structures
    • /
    • 제11권6호
    • /
    • pp.427-440
    • /
    • 2008
  • Estimates of wind-induced wind effects on tall buildings are based largely on 1980s technology. Such estimates can vary significantly depending upon the wind engineering laboratory producing them. We describe an efficient database-assisted design (DAD) procedure allowing the realistic estimation of wind-induced internal forces with any mean recurrence interval in any individual member. The procedure makes use of (a) time series of directional aerodynamic pressures recorded simultaneously at typically hundreds of ports on the building surface, (b) directional wind climatological data, (c) micrometeorological modeling of ratios between wind speeds in open exposure and mean wind speeds at the top of the building, (d) a physically and probabilistically realistic aerodynamic/climatological interfacing model, and (e) modern computational resources for calculating internal forces and demand-to-capacity ratios for each member being designed. The procedure is applicable to tall buildings not susceptible to aeroelastic effects, and with sufficiently large dimensions to allow placement of the requisite pressure measurement tubes. The paper then addresses the issue of accounting explicitly for uncertainties in the factors that determine wind effects. Unlike for routine structures, for which simplifications inherent in standard provisions are acceptable, for tall buildings these uncertainties need to be considered with care, since over-simplified reliability estimates could defeat the purpose of ad-hoc wind tunnel tests.

하니콤 코어 샌드위치 구조 날개의 아음속 플러터 특성 (Subsonic Flutter Characteristics of a Sandwich Structure Wing with Honeycomb core)

  • 김유성;김동현
    • 한국항공운항학회지
    • /
    • 제14권2호
    • /
    • pp.17-26
    • /
    • 2006
  • The flutter characteristics of all movable tail wing with honeycomb sandwich structure have been studied in this study. The present wing model has a airfoil cross section and the linear variation of spanwise thickness. Structural vibration analysis is performed based on the finite element method using sandwich and beam elements. Unsteady aerodynamic technique used on the doublet lattice method has been effectively used to conduct the frequency-domain flutter analyses. The parametric flutter studies have been performed for various structural design parameters. Computational results on flutter stability due to the variation of structural parameters are presented and its related characteristics are investigated through the comparison of results.

  • PDF

High-frequency force balance technique for tall buildings: a critical review and some new insights

  • Chen, Xinzhong;Kwon, Dae-Kun;Kareem, Ahsan
    • Wind and Structures
    • /
    • 제18권4호
    • /
    • pp.391-422
    • /
    • 2014
  • The high frequency force balance (HFFB) technique provides convenient measurements of integrated forces on rigid building models in terms of base bending moments and torque and/or base shear forces. These base moments or forces are then used to approximately estimate the generalized forces of building fundamental modes with mode shape corrections. This paper presents an analysis framework for coupled dynamic response of tall buildings with HFFB technique. The empirical mode shape corrections for generalized forces with coupled mode shapes are validated using measurements of synchronous pressures on a square building surface from a wind tunnel. An alternative approach for estimating the mean and background response components directly using HFFB measurements without mode shape corrections is introduced with a discussion on higher mode contributions. The uncertainty in the mode shape corrections and its influence on predicted responses of buildings with both uncoupled and coupled modal shapes are examined. Furthermore, this paper presents a comparison of aerodynamic base moment spectra with available data sets for various tall building configurations. Finally, e-technology aspects in conjunction with HFFB technique such as web-based on-line analysis framework for buildings with uncoupled mode shapes used in NALD (NatHaz Aerodynamic Loads Database) is discussed, which facilitates the use of HFFB data for preliminary design stages of tall buildings subject to wind loads.

원심 압축기 임펠러의 최적 구조 설계 (Optimum Structural Design for Centrifugal Compressor Impeller)

  • 최유진;송준영;김승조;강신형
    • 한국유체기계학회 논문집
    • /
    • 제2권4호
    • /
    • pp.31-39
    • /
    • 1999
  • Using basic shape and aerodynamic data for the designed impeller, basic structure analysis such as stress analysis and eigenvalue analysis was carried out. Also, we made the optimization program that was designed for optimum thickness within the adaptive stress limits. For the structural optimum theory, we used the BFGS(Broydon Fletcher Goldfarb Shanno) Method which is one of the searching methods. Through this program we managed optimization of the blade. For numerical simulation, we used the optimization program to compose Cyclic Module of NASTRAN and the Optimization Program which was implemented by C and fortran language.

  • PDF

등가하중법을 이용한 접합날개의 기하 비선형 응답 구조최적설계 (Nonlinear Response Structural Optimization of a Joined-Wing Using Equivalent Loads)

  • 김용일;박경진
    • 한국전산구조공학회:학술대회논문집
    • /
    • 한국전산구조공학회 2007년도 정기 학술대회 논문집
    • /
    • pp.321-326
    • /
    • 2007
  • The joined-wing is a new concept of the airplane wing. The fore-wing and the aft-wing arc joined together in the joined-wing. The range and loiter are longer than those of a conventional wing. The joined-wing can lead to increased aerodynamic performances and reduction of the structural weight. The structural behavior of the joined-wing has a high geometric nonlinearity according to the external loads. The gust loads are the most critical loading conditions in the structural design of the joined-wing. The nonlinear behavior should be considered in the optimization of the joined-wing. It is well known that conventional nonlinear response optimization is extremely expensive: therefore, the conventional method is almost impossible to use in large scale structures such as the joined-wing. In this research, geometric nonlinear response structural optimization is carried out using equivalent loads. Equivalent loads are the load sets which generate the same response field in linear analysis as that from nonlinear analysis. In the equivalent loads method, the external loads are transformed to the equivalent loads (EL) for linear static analysis, and linear response optimization is carried out based on the EL.

  • PDF

MDO 최적화 설계기법을 이용해 설계된 1단 축류형 압축기의 성능평가 (Performance Assessment of MDO Optimized 1-Stage Axial Compressor)

  • 강영석;박태춘;양수석;이세일;이동호
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2011년도 제36회 춘계학술대회논문집
    • /
    • pp.397-400
    • /
    • 2011
  • 소형 가스터빈 엔진에 장착 가능한 저압단 축류 압축기의 공력성능 및 구조적 안정성을 동시에 고려한 최적화 설계를 수행하였다. 근사모델을 구축하여 유전알고리즘을 이용하여 전역 최적화 해를 도출하였다. 최적 설계된 압축기의 동익단은 Hub쪽에서 날개의 부하가 커지되, Tip쪽에서 입사각이 0에 가깝게 설계되었다. 한편 동익의 형상은 허브쪽에서 사다리꼴 모양으로 수렴이 되어 구조적 안정성을 확보하도록 설계가 되었다. 최종적인 수치해석 결과 작동점에서 동익단의 효율은 87.6%이며 구조적 안정성을 나타내는 안전계수는 3이상을 확보하였다.

  • PDF

고고도 장기체공 무인기 구조 설계 및 해석 (Structural Design and Analysis for High Altitude Long Endurance UAV)

  • 김성준;이승규;김성찬;김태욱;김승호
    • 한국항공운항학회지
    • /
    • 제22권3호
    • /
    • pp.68-73
    • /
    • 2014
  • Research is being carried out at Korea Aerospace Research Institute with aim of design a HALE UAV(High Altitude Long Endurance Unmanned Air Vehicle). HALE UAVs are ideally suited to provide surveillance, remote sensing and communication relay capabilities for both military and civilian applications. HALE UAVs typically cruise at an altitude between 15 km and 20 km, travelling at low speed and circling specific area of interest. Airframe structural point of view, weight reduction of the airframe structure is the most important method to improve the flight efficiency. High modulus CFRP(Carbon Fiber Reinforced Polymer) has been used in designing the structure in order to minimize the airframe weight. With respect to structural design and analysis, the key question is to decide an adequate airworthiness certification base to define suitable load cases for sizing of various structural components. In this study, FAR(Federal Aviation Regulation) 23 have constituted the guidance and benchmark throughout all structural studies. And the MSC/FlightLoads was introduced to analyze the flight loads for the HALE UAV. The MSC/FlightLoads can compute the flexible air load and analyzed loads are distributed on structural model directly. A preliminary structural concept was defined in accordance with the estimated inertial and aerodynamic loads. A FEM analysis was carried out using the MSC/Nastran code to predict the static and dynamic behaviour of UAV structure.