• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.028 seconds

Lightweight Floor Systems for Tall Buildings: A Comparative Analysis of Structural Material Efficiencies

  • Piyush Khairnar
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.2
    • /
    • pp.145-152
    • /
    • 2023
  • Typical floor systems in contemporary tall buildings consist of reinforced concrete or composite metal deck over framing members and account for a majority of the structural weight of the building. The use of high-density materials, such as reinforced concrete and steel, increases the weight of floor systems, reducing the system's overall efficiency. With the introduction of high-performance materials, mainly mass timber products, and fiber-reinforced composites, in the construction industry, designers and engineers have multiple options to choose from when selecting structural materials. This paper discusses the application of mass timber and carbon fiber composites as structural materials in floor systems of tall buildings. The research focused on a comparative analysis of the structural system efficiency for five different design options for tall building floor systems. Finite Element Analysis (FEA) method was adopted to develop a simulation framework, and parametric structural models were simulated to evaluate the structural performance under specific loading conditions. Simulation results revealed the advantages of lightweight structural materials to improve system efficiency and reduce material consumption. The impact of mechanical properties of materials, loading conditions, and issues related to fire engineering and construction were briefly discussed, and future research topics were identified in conclusion.

A Study on Material Substitution Design and Evaluation Method for Structural Components of Rolling Stocks (철도차량 구조부품의 소재대체 설계 및 평가기법 연구)

  • 구정서;정현승
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.12 no.4
    • /
    • pp.74-84
    • /
    • 2004
  • In this paper, a theoretical method was derived to redesign carbody members by substituting light-weight materials, and to estimate their structural characteristics. Some performance indices to estimate structural behaviors were derived in order to obtain equivalent designs in case of material substitutions under important design constraints of rolling stock, such as bending stiffness, natural frequency, bending and buckling strength. Validity of the theoretical method was evaluated by comparing its results with finite element results in some examples where the aluminium alloy was substituted for the structural steel. The numerical results of the examples show that the proposed method gives reasonable initial guesses for the material substitution designs.

Evaluation of the Structural Integrity of a Sandwich Composite Train Roof Structure (샌드위치 복합재 철도차량 루프구조물의 구조안전성 평가)

  • Shin Kwang-Bok;Ryu Bong-Jo;Lee Jea-Youl;Lee Sang-Jin;Jo Se-Huen
    • Proceedings of the KSR Conference
    • /
    • 2005.11a
    • /
    • pp.338-343
    • /
    • 2005
  • We have evaluated the structural integrity of a sandwich composite train roof which can find a lightweight, cost saving solution to large structural components for rail vehicles in design stages. The sandwich composite train roof was 11.45 meter long and 1.76 meter wide. The reinforced frame was inserted in sandwich panels to improve the structural performance of train roof structure and had the shape of hollow rectangular box. The finite-element analysis was used to calculate the stresses, deflections and natural frequencies of the sandwich composite train roof against the weight of air-condition system. The 3D sandwich FE model was introduced to simulate the hollow aluminum frames which jointed to both sides of the sandwich train roof. The results shown that the structural performance of a sandwich composite train roof under load conditions specified was proven and the use of aluminum reinforced frame was beneficial with regard to weight savings in comparison to steel reinforced frame.

  • PDF

Structure-Control Combined Design for 3-D Flexible Structure (3차원 유연구조물에 대한 구조-제어 통합설계)

  • Park Jung-Hyen
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.10
    • /
    • pp.109-114
    • /
    • 2004
  • A combined optimal design problem of structural and control systems is discussed by taking a 3-D flexible structure as an object. We consider a minimum weight design problem for structural system and disturbance suppression problem for the control system. The conditions for the existence of controller are expressed in terms of linear matrix inequalities (LMI). By minimizing the linear sum of the normalized structural objective function and control objective function, it is possible to make optimal design by which the balance of the structural weight and the control performance is taken. We showed in this paper the validity of combined optimal design of structural and control systems.

Structural Design Optimization of a High Speed Machining Center by Using a Simple Genetic Algorithm (유전 알고리즘을 이용한 고속 금형센터의 구조설계 최적화)

  • 최영휴;박선균;배병태;이재윤;김태형;박보선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.1006-1009
    • /
    • 2000
  • In this study, a multi-step optimization technique combined with a simple genetic algorithm is introduced in order to minimize the static compliance, the dynamic compliance, and the weight of a high speed machining center simultaneously. Dimensional thicknesses of the eight structural members on the static force loop are adopted as design variables. The first optimization step is a static design optimization, in which the static compliance and the weight are minimized under some dimensional and safety constraints. The second step is a dynamic design optimization, where the dynamic compliance and the weight are minimized under the same constraints. After optimization, the weight of the moving body only was reduced to 57.75% and the weight of the whole machining center was reduced to 46.2% of the initial design respectively. Both static and dynamic compliances of the optimum design are also in the feasible range even though they were slightly increased than before.

  • PDF

Weight Reduction Design for a JIB of Deck Crane for Shipment (선박용 갑판크레인의 지브의 경량화설계)

  • Han, Dong-Seop;Lee, Moon-Jae;Han, Geun-Jo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.4
    • /
    • pp.396-400
    • /
    • 2009
  • The demand of JIB crane to handle a container or a bulk in a vessel is increasingly because of the growth of the scale of trade through the sea. This deck crane such as JIB crane is required the weight reduction design because it is installed in the deck of a vessel due to the environment regulation. In this study first we carry out the structural analysis of JIB with respect to the luffing angle of it to calculate the maximum equivalent stress of JIB, and next the optimum design for the weight reduction design of JIB. The thickness in a cross section of JIB is adopted as the design variable, the weight of JIB as the objective function, and the von mises stress as the constraint condition for the optimum design of JIB using the ANSYS 10.0.

Stability of Water Tower with a Relatively Small Footing (상대적으로 작은 기초를 갖는 급수탑의 안정성)

  • Oh Sang-Jin;Jin Tae-Ki
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2006.04a
    • /
    • pp.963-968
    • /
    • 2006
  • The main purpose of this paper is to investigate the stability of water tower with a relatively small footing. The water tower is modeled that the column carrying a container is supported by a rotational spring at the base and is of constant cross-section, with a weight per unit length of column axis. The column model is based on the Bernoulli-Euler beam theory. The Runge-Kutta method and Determinant Search method are used to perform the integration of the governing differential equation and to determine the critical values(critical own weight. and critical buckling load), respectively. The critical buckling loads are calculated over a range of system parameters: the rotational stiffness parameter, the dimensionless radius of container and the own weight parameter of the column. The relation between the rotational stiffness parameter and the critical own weight parameter of the column is analyzed.

  • PDF

Weight-reduction Prediction for the Conceptual Design of Carbody with Shell Type Sections Using the Material Substitution Technique (쉘형 차체 구조의 소재대체 개념설계에 대한 경량화 예측 기법)

  • Koo, Jeong-Seo;Cho, Hyun-Jik
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.15 no.4
    • /
    • pp.17-26
    • /
    • 2007
  • In this paper, a theoretical approach is studied to predict structural performances and weight reduction rates of a car-body with shell type sections in case that its materials have to be substituted. For the material substitution design of a car-body, bending, axial and twisting deformations are considered under constant stiffness and strength conditions, which utilize some new indices derived from a structural performance point of view. The developed indices to measure the weight reduction by the material substitution give good guidelines on conceptual design of car-bodies.

A Study on Permit Vehicle Weight for Highway Bridges (도로교의 중차량 통과허용하중 설정에 관한 연구)

  • 김상효;양남석;김종학;전귀현
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2000.04b
    • /
    • pp.222-229
    • /
    • 2000
  • Malty bridges are severely damaged by the overloaded heavy vehicle and tile trend will become more serious because the traffic volume is continuously increasing. Currently, the vehicles with gross weights over 40 tons or axle weight over 10 tons are not allowed on the public road. However, this regulation is not based on a systemetic study on the bridge capacityand assumed to be much too conservative depending on the vehicle types ans bridge types. In this study, the permit weights of heavy vehicles of diverse axle spacings and axle load distribution are calculated considering the structural characteristics of bridge superstructures. In order to consider the various load effects of heavy weight vehicle crossings, three conditions are considered in the calculation of permit vehicle load. From the results, the permit vehicle weights of bridges are calculated and simplified formulas which can be used in the case when only the vehicle dimension are known are presented.

  • PDF