• Title/Summary/Keyword: Structural Weight

Search Result 2,484, Processing Time 0.034 seconds

An Experimental Study for Structural Safety Evaluation of PSC Box Girder Bridge with FRP Struts (FRP 스트럿을 가진 PSC 박스거더교의 구조안전성 평가를 위한 실험 연구)

  • Song, Jae-Joon;Park, Jong-Hwa;Park, Kyung-Hoon;Jo, Byung-Wan
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.6
    • /
    • pp.205-213
    • /
    • 2008
  • The structure of PSC box girder with FRP strut has a form of supporting the cantilever part in the widened upper slab by modifying the existing PSC box girder efficiently, and it is able to build an economical and aesthetically pleasing bridge as it reduces the size of the lower structure by reducing the self-weight of the upper structure. In this research, loading test of PSC Box Girder using full-scale mock-up was conducted and FEM analysis was performed. By comparing results, structural safety of the FRP strut and the upper slab following application of the strut in the PSC Box Girder Bridge were evaluated.

Optimization of Frontal Crashworthiness for the Weight Reduction Design of an Auto-body Member with the Advanced High Strength Steels (초고강도강 적용 차체 부재의 경량 설계를 위한 정면 충돌성능 최적화)

  • Kim, Kee-Poong;Kim, Se-Ho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.104-111
    • /
    • 2009
  • In this paper, optimization for frontal crashworthiness is carried out for the weight reduction design of an auto-body member with the advanced high strength steels(AHSS) such as 780TRIP and 780DP. The frontal crashworthiness is evaluated in order to optimize thicknesses for the front rail member of the ULSAB-AVC, Thicknesses of the front rail member with AHSS are optimized by comparison of crushing distance, absorbed energy and the deceleration for the auto-body with the response surface methodology. The results demonstrate that the crashworhiness of the front rail member with the optimum thicknesses of the AHSS is similar to analysis results obtained from the ULSAB-AVC project. The results also show that the weight reduction design is performed by substituting the AHSS for conventional structural steels such as 440E in the auto-body members.

A Study on the Sound Insulation for Void-deck Slab Combined with Deck Plate and Polystyrene Void Foam (데크플레이트와 경량성형재가 결합된 슬래브의 차음성능에 대한 실물실험 평가)

  • Roh, Young-Sook;Yoon, Seong-Ho
    • Journal of the Korean Society of Safety
    • /
    • v.30 no.1
    • /
    • pp.60-65
    • /
    • 2015
  • This study is to explore floor impact sound and sound insulation of reinforced concrete structure with void-deck slab system which combines polystyrene void foam and T-shaped steel deck plate. A void-deck slab system can effectively reduce the amount of concrete used and hence the mass of a reinforced concrete slab. Also void slab system has dynamically favorable for bending. Three-bay 2-story building was constructed as a mock up test specimen using void-deck slab system and floor impact sound was measured to valuate sound insulation performance. Light weight floor impact and heavy weight floor impact were investigated. Light weight floor impact pressure levels were 32dB, 28dB, and 29db at representative locations which are $1^{st}$ level in the floor impact sound insulation performance grading system. The heavy-weight floor impact pressure levels were 44dB, 45dB, and 43dB at representative locations which are $2^{nd}$ level in the floor impact sound insulation performance grading system. Therefore void-deck slab system can be used in public housing apartment building in terms of not only effectively reduced construction materials but also floor impact sound insulation.

A Study of the Basic Properties of Lightweight Aggregate Concrete for Offshore Structures Application (해양구조물 적용을 위한 경량골재콘크리트의 기초물성에 관한 연구)

  • Kim, Myung-Sik;Jang, Hee-Suk;Kim, Chung-Ho;Baek, Dong-Il
    • Journal of Ocean Engineering and Technology
    • /
    • v.25 no.1
    • /
    • pp.73-79
    • /
    • 2011
  • The various properties of concrete have been required, as civil engineering structures are getting larger and complicated. Therefore, the high performance of concrete, such as high strength, high fluidity, and low hydration heat, has been investigated largely. In this study, the properties of lightweight concrete-reducing self-weight of structure member have been studied in order to check the applicability of lightweight aggregate concrete to structural material. The experiments on compressive strength, splitting tensile strength, unit weight, and modulus of elasticity have been conducted with varying PLC, LWCI, LWCII, LWCII-SF5, LWCII-SF15 to check the basic properties. The compressive strength of 21MPa was obtained easily by using lightweight aggregate concrete and the addition of silica fume to increase the compressive strength slightly. To use lightweight aggregate concrete for civil engineering structures, systematic and rigorous studies are necessary.

Light-Weight Design of Maglev Car-Body Frame Using Response Surface Approximation (반응면 근사를 이용한 자기부상열차 차체 프레임 경량화 설계)

  • Bang, Je-Sung;Han, Jeong-Woo;Lee, Jong-Min
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.11
    • /
    • pp.1297-1308
    • /
    • 2011
  • The light-weight design of UTM (Urban Transit Maglev)-02 car-body frames are performed, based on initial configuration. The thicknesses of fourteen sub-structures are defined as design variables and the loading condition is considered according to weight of sub-structures, electronic and pneumatic modules and passengers. For efficient and robust process of design optimization, objective function and constraints are approximated by response surface approximation. Structural analysis is performed at some sampling points to construct the approximated objective function and constraints composed of design variables. Design space is changed to find many optimal candidates and best optimal design can be found eventually. The Matlab Optimization Toolbox is used to find optimal value and sensitivity analysis about each design variable is also performed.

Compensatory Responses of Nile Tilapia Oreochromis niloticus under Different Feed-Deprivation Regimes

  • Gao, Yang;Lee, Jeong-Yeol
    • Fisheries and Aquatic Sciences
    • /
    • v.15 no.4
    • /
    • pp.305-311
    • /
    • 2012
  • We investigated compensatory growth of Nile Tilapia Oreochromis niloticus in structural size and live weight in response to different deprivation periods and refeeding. Four treatments were assigned randomly to fish in 12 glass tanks, with each treatment performed in triplicate. The control group was fed to satiation three times a day throughout the experiment. The other three treatment groups were starved for 1 week (S1), 2 weeks (S2), or 4 weeks (S4) and then fed until the end of the experiment. After the experiment, no significant differences were observed among S1, S2, and the control group in average weight or length, whereas the weight and length of S4 were significantly reduced. Relative condition factors of the three starved groups decreased significantly until the end of the restricted period but recovered rapidly after refeeding. The specific growth rate in weight ($SGR_W$) of the three restricted groups recovered quickly upon refeeding and were significantly higher than the control group, but these differences disappeared gradually until the end of the experiment. No significant difference in specific growth rate in length ($SGR_L$) was noted between the control group and the three restricted groups after refeeding. All three groups showed hyperphagia for a short period upon refeeding, and no statistical differences were observed in feeding efficiency among the four groups.

Evaluation of Mechanical Properties of Porous and Pervious Light-weight Concrete by Mixing Proportion (다공성, 투수성 경량콘크리트의 배합비에 따른 물리적 특성 평가)

  • Ahn, Hwi-Soon;Shin, Hyun-Oh;SeonWoo, Yoon-Ho;Song, Si-Bum;Jung, Kwang-Sik;Yoon, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.305-306
    • /
    • 2010
  • Recently, concrete have been used not only for structural purpose but also for various other purposes. The goal of this research is to develop porous and pervious light-weight concrete in order to apply to filters, which primarily treats rain water. Because Porous and pervious light-weight concrete is discontinuum with large amount of porosity, its physical characteristic is completely different from that of ordinary concrete. The basic properties such as the change in porosity rate depending on mixing proportion and the mechanical characteristics of porous and pervious light-weight concrete were experimentally evaluated.

  • PDF

Performance of non-prismatic simply supported prestressed concrete beams

  • Raju, P. Markandeya;Rajsekhar, K.;Sandeep, T. Raghuram
    • Structural Engineering and Mechanics
    • /
    • v.52 no.4
    • /
    • pp.723-738
    • /
    • 2014
  • Prestressing is the most commonly employed technique in bridges and long span beams in commercial buildings as prestressing results in slender section with higher load carrying capacities. This work is an attempt to study the performance of a minimum weight prestressed concrete beam adopting a non-prismatic section so that there will be a reduction in the volume of concrete which in turn reduces the self-weight of the structure. The effect of adopting a non-prismatic section on parameters like prestressing force, area of prestressing steel, bending stresses, shear stresses and percentage loss of prestress are established theoretically. The analysis of non-prismatic prestressed beams is based on the assumption of pure bending theory. Equations are derived for dead load bending moment, eccentricity, and depth at any required section. Based on these equations an algorithm is developed which does the stress checks for the given section for every 500 mm interval of the span. Limit state method is used for the design of beam and finite difference method is used for finding out the deflection of a non-prismatic beam. All the parameters of nonprismatic prestressed concrete beams are compared with that of the rectangular prestressed concrete members and observed that minimum weight design and economical design are not same. Minimum weight design results in the increase in required area of prestressing steel.

Investigation of Floor Impact Sound Levels in Rahmen Structure Multi-story Residential Buildings (라멘복합구조 공동주택의 바닥충격음 실태)

  • 정정호;송희수;전진용
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.05a
    • /
    • pp.308-311
    • /
    • 2004
  • It is reported that there is a limit in increasing heavy-weight impact noise isolation performance of the load bearing wall system apartments to meet the regulation of the Ministry of Construction and Transportation (MOCT). To increase the heavy-weight impact noise isolation performance, improvement in structural systems such as increasing concrete slab thickness and application of rahmen structure were proposed. In this study floor impact sound levels from toil apartments with two rahmen structure multi-story residential buildings were measured before the construction of the buildings finished. Measurements were made at living room and two bedrooms at each apartment when the finishing processes were finished. The average value of light-weight impact sound level from ten apartments was 56dB (L'$\sub$n,Aw/). The heavy-weight impact sound level was 44dB (L'$\sub$i.Fmax.Aw/) and the impact sound level of the impact ball was 41dB(L'$\sub$i.Fmax.Aw/), As a result floor impact noises at the rahmen structure system were lower than the regulation level.

  • PDF

Influence of laminated orientation on the mechanical and thermal characteristics of carbon-fiber reinforced plastics

  • Shin, Hee-Jae;Kwac, Lee-Ku;Lee, Min-Sang;Kim, Hong-Gun
    • Carbon letters
    • /
    • v.16 no.4
    • /
    • pp.241-246
    • /
    • 2015
  • Rapid industrial development in recent times has increased the demand for light-weight materials with high strength and structural integrity. In this context, carbon fiber-reinforced plastic (CFRP) composite materials are being extensively used. However, laminated CFRPs develop faults during impact because CFRPs are composed of mixed carbon fiber and epoxy. Moreover, their fracturing behavior is very complicated and difficult to interpret. In this paper, the effect of the direction of lamination in CFRP on the absorbed impact energy and impact strength were evaluated, including symmetric ply (0°/0°, −15°/+15°, −30°/+30°, −45°/+45°, and −90°/+90°) and asymmetric ply (0°/15°, 0°/30°, 0°/45°, and 0°/90°), through drop-weight impact tests. Further, the thermal properties of the specimens were measured using an infrared camera. Correlations between the absorbed impact energy, impact strength, and thermal properties as determined by the drop-weight impact tests were analyzed. These analyses revealed that the absorbed impact energy of the specimens with asymmetric laminated angles was greater than that of the specimens with symmetric laminated angles. In addition, the asymmetry ply absorbed more impact energy than the symmetric ply. Finally, the absorbed impact energy was inversely proportional to the thermal characteristics of the specimens.